huago-corrcet_tools/HuaGoCorrect/pub/ddk/rxce.h

388 lines
13 KiB
C

/*++ BUILD Version: 0009 // Increment this if a change has global effects
Copyright (c) 1987-1993 Microsoft Corporation
Module Name:
rxce.h
Abstract:
This is the include file that defines all constants and types for
accessing the redirector file system connection engine.
Revision History:
Notes:
The Connection engine is designed to map and emulate the TDI specs. as closely
as possible. This implies that on NT we will have a very efficient mechanism
which fully exploits the underlying TDI implementation.
There are four important data structures that are created/manipulated by the
various functions associated with the connection engine. Thesr are
RXCE_TRANSPORT,RXCE_ADDRESS,RXCE_CONNECTION and RXCE_VC.
The mini redirector writers can embed these data structures in the corresponding
definitions and invoke the two routines provided for each type to build and
tear down the connection engine portions. These routines do not allocate/free
the memory associated with these instances. This provides a flexible mechanism
for the mini redirector writers to manage instances.
--*/
#ifndef _RXCE_H_
#define _RXCE_H_
#include <nodetype.h>
#include <rxcehdlr.h> // TDI related definitions.
#include <rxworkq.h>
//
// The connection engine deals with three kinds of entities, transports, transport
// addresses and transport connections. The transports are bindings to the various
// transport service providers on any system. The transport addresses are the
// local connection end points. The connections are transport connections between
// endpoints. Each connection encapsulates a number of virtual circuits
// ( typically 1 ).
//
// All the four node types are tagged with the following signature which is used
// extensively in validating them
typedef struct _RXCE_SIGNATURE_ {
union {
struct {
USHORT Type;
CSHORT Size;
};
ULONG Signature;
};
} RXCE_SIGNATURE, *PRXCE_SIGNATURE;
//
// RXCE_TRANSPORT encapsulates all the parameters w.r.t. a TRANSPORT
// as regards the connection engine.
//
#ifdef __cplusplus
typedef struct _RXCE_TRANSPORT_ : public RXCE_SIGNATURE {
#else // !__cplusplus
typedef struct _RXCE_TRANSPORT_ {
RXCE_SIGNATURE;
#endif // __cplusplus
UNICODE_STRING Name;
PDEVICE_OBJECT pDeviceObject; // Device object for transport
HANDLE ControlChannel; // Control Channel
PFILE_OBJECT pControlChannelFileObject; // File object for the control channel
PRXCE_TRANSPORT_PROVIDER_INFO pProviderInfo; // Transport Provider Information.
LONG ConnectionCount; // Number of connections on xport.
LONG VirtualCircuitCount; // no. of connections
ULONG QualityOfService; // quality of service provided.
} RXCE_TRANSPORT;
#define RXCE_TRANSPORT_SIGNATURE ((sizeof(RXCE_TRANSPORT) << 16) | RDBSS_NTC_RXCE_TRANSPORT)
#define RxCeIsTransportValid(pTransport) \
((pTransport)->Signature == RXCE_TRANSPORT_SIGNATURE)
extern NTSTATUS
NTAPI
RxCeBuildTransport(
IN PRXCE_TRANSPORT pRxCeTransport,
IN PUNICODE_STRING pTransportName,
IN ULONG QualityOfService);
extern NTSTATUS
NTAPI
RxCeTearDownTransport(
IN PRXCE_TRANSPORT pTransport);
extern NTSTATUS
RxCeQueryAdapterStatus(
PRXCE_TRANSPORT pTransport,
struct _ADAPTER_STATUS *pAdapterStatus);
extern NTSTATUS
RxCeQueryTransportInformation(
PRXCE_TRANSPORT pTransport,
PRXCE_TRANSPORT_INFORMATION pTransportInformation);
//
// RXCE_ADDRESS encapsulates all the parameters w.r.t. a local transport address
// as regards the connection engine.
//
#ifdef __cplusplus
typedef struct _RXCE_ADDRESS_ : public RXCE_SIGNATURE {
#else // !__cplusplus
typedef struct _RXCE_ADDRESS_ {
RXCE_SIGNATURE;
#endif // __cplusplus
PRXCE_TRANSPORT pTransport; // the transport handle
PTRANSPORT_ADDRESS pTransportAddress; // the transport address
PVOID pContext; // the context used in event dispatch
PRXCE_ADDRESS_EVENT_HANDLER pHandler; // the address event handler
PMDL pReceiveMdl; // the MDL for handling Receives Supplied by client
HANDLE hAddress; // handle to the address object
PFILE_OBJECT pFileObject; // the file object for the address
LONG ConnectionCount; // no. of connections
LONG VirtualCircuitCount; // no. of vcs
} RXCE_ADDRESS;
#define RXCE_ADDRESS_SIGNATURE ((sizeof(RXCE_ADDRESS) << 16) | RDBSS_NTC_RXCE_ADDRESS)
#define RxCeIsAddressValid(pAddress) \
((pAddress)->Signature == RXCE_ADDRESS_SIGNATURE)
extern NTSTATUS
NTAPI
RxCeBuildAddress(
IN OUT PRXCE_ADDRESS pAddress,
IN PRXCE_TRANSPORT pTransport,
IN PTRANSPORT_ADDRESS pTransportAddress,
IN PRXCE_ADDRESS_EVENT_HANDLER pHandler,
IN PVOID pEventContext);
extern NTSTATUS
NTAPI
RxCeTearDownAddress(
IN PRXCE_ADDRESS pAddress);
//
// RxCe Connection Establishment methods ....
//
//
// RXCE_CONNECTION encapsulates all the information w.r.t. a connection
// as regards the connection engine.
//
#ifdef __cplusplus
typedef struct _RXCE_CONNECTION_ : public RXCE_SIGNATURE {
#else // !__cplusplus
typedef struct _RXCE_CONNECTION_ {
RXCE_SIGNATURE;
#endif // __cplusplus
PRXCE_ADDRESS pAddress; // the local address for this connection
ULONG VirtualCircuitCount; // the number of virtual circuits associated with the connection
PVOID pContext; // the context used in event dispatch
PRXCE_CONNECTION_EVENT_HANDLER pHandler; // the event handler for the connection
PRXCE_CONNECTION_INFORMATION pConnectionInformation; // the remote address ...
} RXCE_CONNECTION;
#define RXCE_CONNECTION_SIGNATURE ((sizeof(RXCE_CONNECTION) << 16) | RDBSS_NTC_RXCE_CONNECTION)
#define RxCeIsConnectionValid(pConnection) \
((pConnection)->Signature == RXCE_CONNECTION_SIGNATURE)
//
// The following enumerated type defines the various choices presented for
// selecting the transport over which a connection should be established
//
typedef enum _RXCE_CONNECTION_CREATE_OPTIONS_ {
RxCeSelectFirstSuccessfulTransport,
RxCeSelectBestSuccessfulTransport,
RxCeSelectAllSuccessfulTransports
} RXCE_CONNECTION_CREATE_OPTIONS,
*PRXCE_CONNECTION_CREATE_OPTIONS;
typedef struct _RXCE_CONNECTION_COMPLETION_CONTEXT_ {
NTSTATUS Status;
ULONG AddressIndex;
PRXCE_CONNECTION pConnection;
PRXCE_VC pVc;
RX_WORK_QUEUE_ITEM WorkQueueItem;
// This is used to pass the UNICODE DNS name returned back from TDI
PRXCE_CONNECTION_INFORMATION pConnectionInformation;
} RXCE_CONNECTION_COMPLETION_CONTEXT,
*PRXCE_CONNECTION_COMPLETION_CONTEXT;
typedef
NTSTATUS
(*PRXCE_CONNECTION_COMPLETION_ROUTINE)(
PRXCE_CONNECTION_COMPLETION_CONTEXT pCompletionContext);
extern NTSTATUS
NTAPI
RxCeBuildConnection(
IN PRXCE_ADDRESS pLocalAddress,
IN PRXCE_CONNECTION_INFORMATION pConnectionInformation,
IN PRXCE_CONNECTION_EVENT_HANDLER pHandler,
IN PVOID pEventContext,
IN OUT PRXCE_CONNECTION pConnection,
IN OUT PRXCE_VC pVc);
extern NTSTATUS
NTAPI
RxCeBuildConnectionOverMultipleTransports(
IN OUT PRDBSS_DEVICE_OBJECT pMiniRedirectorDeviceObject,
IN RXCE_CONNECTION_CREATE_OPTIONS CreateOption,
IN ULONG NumberOfAddresses,
IN PRXCE_ADDRESS *pLocalAddressPointers,
IN PUNICODE_STRING pServerName,
IN PRXCE_CONNECTION_INFORMATION pConnectionInformation,
IN PRXCE_CONNECTION_EVENT_HANDLER pHandler,
IN PVOID pEventContext,
IN PRXCE_CONNECTION_COMPLETION_ROUTINE pCompletionRoutine,
IN OUT PRXCE_CONNECTION_COMPLETION_CONTEXT pCompletionContext);
extern NTSTATUS
NTAPI
RxCeTearDownConnection(
IN PRXCE_CONNECTION pConnection);
extern NTSTATUS
NTAPI
RxCeCancelConnectRequest(
IN PRXCE_ADDRESS pLocalAddress,
IN PUNICODE_STRING pServerName,
IN PRXCE_CONNECTION_INFORMATION pConnectionInformation);
//
// RXCE_VC encapsulates all the information w.r.t a virtual circuit (VC)
// connection to a particular server as regards the connection engine.
//
// Typically one VC is associated with a connection. However, there are instances in
// which more than one VC can be associated with a connection. In order to efficiently
// handle the common case well and at the same time provide an extensible mechanism we
// define a collection data structure ( a list ) which subsumes the allocation for
// one virtual circuit. It is also imperative that we restrict the knowledge of
// how this collection is organized to as few methods as possible in order to
// enable optimization/restructuring of this data structure at a later time.
//
#define RXCE_VC_ACTIVE ((LONG)0xaa)
#define RXCE_VC_DISCONNECTED ((LONG)0xdd)
#define RXCE_VC_TEARDOWN ((LONG)0xbb)
#ifdef __cplusplus
typedef struct _RXCE_VC_ : public RXCE_SIGNATURE {
#else // !__cplusplus
typedef struct _RXCE_VC_ {
RXCE_SIGNATURE;
#endif // __cplusplus
PRXCE_CONNECTION pConnection; // the referenced connection instance
HANDLE hEndpoint; // local endpoint for the connection
PFILE_OBJECT pEndpointFileObject; // the end point file object.
__volatile LONG State; // status of the Vc.
CONNECTION_CONTEXT ConnectionId; // local endpoint for the connection.
PMDL pReceiveMdl; // the MDl for handling receives.
PKEVENT pCleanUpEvent; // sychronize event for clean up transports
} RXCE_VC;
#define RXCE_VC_SIGNATURE ((sizeof(RXCE_VC) << 16) | RDBSS_NTC_RXCE_VC)
#define RxCeIsVcValid(pVc) \
((pVc)->Signature == RXCE_VC_SIGNATURE)
extern NTSTATUS
NTAPI
RxCeBuildVC(
IN OUT PRXCE_VC pVc,
IN PRXCE_CONNECTION Connection);
extern NTSTATUS
NTAPI
RxCeTearDownVC(
IN PRXCE_VC pVc);
extern NTSTATUS
NTAPI
RxCeInitiateVCDisconnect(
IN PRXCE_VC pVc);
extern NTSTATUS
NTAPI
RxCeQueryInformation(
IN PRXCE_VC pVc,
IN RXCE_CONNECTION_INFORMATION_CLASS InformationClass,
OUT PVOID pInformation,
IN ULONG Length);
//
// RxCe Data transmission methods
//
//
// Send options
//
// The following flags are equivalent to the TDI flags. In addition
// there are RXCE specific flags which are defined from the other end of
// a dword.
//
#define RXCE_SEND_EXPEDITED TDI_SEND_EXPEDITED
#define RXCE_SEND_NO_RESPONSE_EXPECTED TDI_SEND_NO_RESPONSE_EXPECTED
#define RXCE_SEND_NON_BLOCKING TDI_SEND_NON_BLOCKING
//
// The ASYNCHRONOUS and SYNCHRONOUS option available RxCeSend and RxCeSendDatagram
// distinguish between two situations. In the asynchronous case control returns to
// the caller once the request has been successfully submitted to the underlying
// transport. The results for any given request are communicated back using the
// SendCompletion callback routine. The pCompletionContext parameter in RxCeSend and
// RxCeSendDatagram is passed back in the callback routine to assist the caller in
// disambiguating the requests.
//
// In the synchronous case the request is submitted to the underlying transport and the
// control does not return to the caller till the request completes.
//
// Note that in the synchrnous case the pCompletionContext parameter is ignored and the
// status that is returned correpsonds to the completion status of the operations.
//
// The benefit of ASYNCHRONOUS and SYNCHRONOUS options depends on the underlying
// transport. In a Virtual Circuit environment a SYNCHRONOUS option implies that the
// control does not return till the data reaches the server. On the other hand
// for datagram oriented transports there is very little difference between the two.
//
#define RXCE_FLAGS_MASK (0xff000000)
#define RXCE_SEND_SYNCHRONOUS (0x10000000)
// The following bit signifies if an RX_MEM_DESC(MDL) is to be sent in its entirety
// or only portions of it need to be sent.
#define RXCE_SEND_PARTIAL (0x20000000)
extern NTSTATUS
NTAPI
RxCeSend(
IN PRXCE_VC pVc,
IN ULONG SendOptions,
IN PMDL pMdl,
IN ULONG SendLength,
IN PVOID pCompletionContext);
extern NTSTATUS
NTAPI
RxCeSendDatagram(
IN PRXCE_ADDRESS hAddress,
IN PRXCE_CONNECTION_INFORMATION pConnectionInformation,
IN ULONG SendOptions,
IN PMDL pMdl,
IN ULONG SendLength,
IN PVOID pCompletionContext);
extern PIRP
RxCeAllocateIrpWithMDL(
IN CCHAR StackSize,
IN BOOLEAN ChargeQuota,
IN PMDL Buffer);
extern VOID
RxCeFreeIrp(PIRP pIrp);
#endif // _RXCE_H_