twain3.0/3rdparty/hgOCR/leptonica/pix2.c

3391 lines
101 KiB
C

/*====================================================================*
- Copyright (C) 2001 Leptonica. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the following
- disclaimer in the documentation and/or other materials
- provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*====================================================================*/
/*!
* \file pix2.c
* <pre>
*
* This file has these basic operations:
*
* (1) Get and set: individual pixels, full image, rectangular region,
* pad pixels, border pixels, and color components for RGB
* (2) Add and remove border pixels
* (3) Endian byte swaps
* (4) Simple method for byte-processing images (instead of words)
*
* Pixel poking
* l_int32 pixGetPixel()
* l_int32 pixSetPixel()
* l_int32 pixGetRGBPixel()
* l_int32 pixSetRGBPixel()
* l_int32 pixGetRandomPixel()
* l_int32 pixClearPixel()
* l_int32 pixFlipPixel()
* void setPixelLow()
*
* Find black or white value
* l_int32 pixGetBlackOrWhiteVal()
*
* Full image clear/set/set-to-arbitrary-value
* l_int32 pixClearAll()
* l_int32 pixSetAll()
* l_int32 pixSetAllGray()
* l_int32 pixSetAllArbitrary()
* l_int32 pixSetBlackOrWhite()
* l_int32 pixSetComponentArbitrary()
*
* Rectangular region clear/set/set-to-arbitrary-value/blend
* l_int32 pixClearInRect()
* l_int32 pixSetInRect()
* l_int32 pixSetInRectArbitrary()
* l_int32 pixBlendInRect()
*
* Set pad bits
* l_int32 pixSetPadBits()
* l_int32 pixSetPadBitsBand()
*
* Assign border pixels
* l_int32 pixSetOrClearBorder()
* l_int32 pixSetBorderVal()
* l_int32 pixSetBorderRingVal()
* l_int32 pixSetMirroredBorder()
* PIX *pixCopyBorder()
*
* Add and remove border
* PIX *pixAddBorder()
* PIX *pixAddBlackOrWhiteBorder()
* PIX *pixAddBorderGeneral()
* PIX *pixRemoveBorder()
* PIX *pixRemoveBorderGeneral()
* PIX *pixRemoveBorderToSize()
* PIX *pixAddMirroredBorder()
* PIX *pixAddRepeatedBorder()
* PIX *pixAddMixedBorder()
* PIX *pixAddContinuedBorder()
*
* Helper functions using alpha
* l_int32 pixShiftAndTransferAlpha()
* PIX *pixDisplayLayersRGBA()
*
* Color sample setting and extraction
* PIX *pixCreateRGBImage()
* PIX *pixGetRGBComponent()
* l_int32 pixSetRGBComponent()
* PIX *pixGetRGBComponentCmap()
* l_int32 pixCopyRGBComponent()
* l_int32 composeRGBPixel()
* l_int32 composeRGBAPixel()
* void extractRGBValues()
* void extractRGBAValues()
* l_int32 extractMinMaxComponent()
* l_int32 pixGetRGBLine()
*
* Conversion between big and little endians
* PIX *pixEndianByteSwapNew()
* l_int32 pixEndianByteSwap()
* l_int32 lineEndianByteSwap()
* PIX *pixEndianTwoByteSwapNew()
* l_int32 pixEndianTwoByteSwap()
*
* Extract raster data as binary string
* l_int32 pixGetRasterData()
*
* Test alpha component opaqueness
* l_int32 pixAlphaIsOpaque
*
* Setup helpers for 8 bpp byte processing
* l_uint8 **pixSetupByteProcessing()
* l_int32 pixCleanupByteProcessing()
*
* Setting parameters for antialias masking with alpha transforms
* void l_setAlphaMaskBorder()
* </pre>
*/
#include <string.h>
#include "allheaders.h"
static const l_uint32 rmask32[] = {0x0,
0x00000001, 0x00000003, 0x00000007, 0x0000000f,
0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
0x0001ffff, 0x0003ffff, 0x0007ffff, 0x000fffff,
0x001fffff, 0x003fffff, 0x007fffff, 0x00ffffff,
0x01ffffff, 0x03ffffff, 0x07ffffff, 0x0fffffff,
0x1fffffff, 0x3fffffff, 0x7fffffff, 0xffffffff};
/* This is a global that determines the default 8 bpp alpha mask values
* for rings at distance 1 and 2 from the border. Declare extern
* to use. To change the values, use l_setAlphaMaskBorder(). */
LEPT_DLL l_float32 AlphaMaskBorderVals[2] = {0.0, 0.5};
#ifndef NO_CONSOLE_IO
#define DEBUG_SERIALIZE 0
#endif /* ~NO_CONSOLE_IO */
/*-------------------------------------------------------------*
* Pixel poking *
*-------------------------------------------------------------*/
/*!
* \brief pixGetPixel()
*
* \param[in] pix
* \param[in] x,y pixel coords
* \param[out] pval pixel value
* \return 0 if OK; 1 or 2 on error
*
* <pre>
* Notes:
* (1) This returns the value in the data array. If the pix is
* colormapped, it returns the colormap index, not the rgb value.
* (2) Because of the function overhead and the parameter checking,
* this is much slower than using the GET_DATA_*() macros directly.
* Speed on a 1 Mpixel RGB image, using a 3 GHz machine:
* * pixGet/pixSet: ~25 Mpix/sec
* * GET_DATA/SET_DATA: ~350 MPix/sec
* If speed is important and you're doing random access into
* the pix, use pixGetLinePtrs() and the array access macros.
* (3) If the point is outside the image, this returns an error (2),
* with 0 in %pval. To avoid spamming output, it fails silently.
* </pre>
*/
l_ok
pixGetPixel(PIX *pix,
l_int32 x,
l_int32 y,
l_uint32 *pval)
{
l_int32 w, h, d, wpl, val;
l_uint32 *line, *data;
PROCNAME("pixGetPixel");
if (!pval)
return ERROR_INT("&val not defined", procName, 1);
*pval = 0;
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixGetDimensions(pix, &w, &h, &d);
if (x < 0 || x >= w || y < 0 || y >= h)
return 2;
wpl = pixGetWpl(pix);
data = pixGetData(pix);
line = data + y * wpl;
switch (d)
{
case 1:
val = GET_DATA_BIT(line, x);
break;
case 2:
val = GET_DATA_DIBIT(line, x);
break;
case 4:
val = GET_DATA_QBIT(line, x);
break;
case 8:
val = GET_DATA_BYTE(line, x);
break;
case 16:
val = GET_DATA_TWO_BYTES(line, x);
break;
case 32:
val = line[x];
break;
default:
return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", procName, 1);
}
*pval = val;
return 0;
}
/*!
* \brief pixSetPixel()
*
* \param[in] pix
* \param[in] x,y pixel coords
* \param[in] val value to be inserted
* \return 0 if OK; 1 or 2 on error
*
* <pre>
* Notes:
* (1) Warning: the input value is not checked for overflow with respect
* the the depth of %pix, and the sign bit (if any) is ignored.
* * For d == 1, %val > 0 sets the bit on.
* * For d == 2, 4, 8 and 16, %val is masked to the maximum allowable
* pixel value, and any (invalid) higher order bits are discarded.
* (2) See pixGetPixel() for information on performance.
* (3) If the point is outside the image, this returns an error (2),
* with 0 in %pval. To avoid spamming output, it fails silently.
* </pre>
*/
l_ok
pixSetPixel(PIX *pix,
l_int32 x,
l_int32 y,
l_uint32 val)
{
l_int32 w, h, d, wpl;
l_uint32 *line, *data;
PROCNAME("pixSetPixel");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixGetDimensions(pix, &w, &h, &d);
if (x < 0 || x >= w || y < 0 || y >= h)
return 2;
data = pixGetData(pix);
wpl = pixGetWpl(pix);
line = data + y * wpl;
switch (d)
{
case 1:
if (val)
SET_DATA_BIT(line, x);
else
CLEAR_DATA_BIT(line, x);
break;
case 2:
SET_DATA_DIBIT(line, x, val);
break;
case 4:
SET_DATA_QBIT(line, x, val);
break;
case 8:
SET_DATA_BYTE(line, x, val);
break;
case 16:
SET_DATA_TWO_BYTES(line, x, val);
break;
case 32:
line[x] = val;
break;
default:
return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", procName, 1);
}
return 0;
}
/*!
* \brief pixGetRGBPixel()
*
* \param[in] pix 32 bpp rgb, not colormapped
* \param[in] x,y pixel coords
* \param[out] prval [optional] red component
* \param[out] pgval [optional] green component
* \param[out] pbval [optional] blue component
* \return 0 if OK; 1 or 2 on error
*
* Notes:
* (1) If the point is outside the image, this returns an error (2),
* with 0 in %pval. To avoid spamming output, it fails silently.
*/
l_ok
pixGetRGBPixel(PIX *pix,
l_int32 x,
l_int32 y,
l_int32 *prval,
l_int32 *pgval,
l_int32 *pbval)
{
l_int32 w, h, d, wpl;
l_uint32 *data, *ppixel;
PROCNAME("pixGetRGBPixel");
if (prval) *prval = 0;
if (pgval) *pgval = 0;
if (pbval) *pbval = 0;
if (!prval && !pgval && !pbval)
return ERROR_INT("no output requested", procName, 1);
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixGetDimensions(pix, &w, &h, &d);
if (d != 32)
return ERROR_INT("pix not 32 bpp", procName, 1);
if (x < 0 || x >= w || y < 0 || y >= h)
return 2;
wpl = pixGetWpl(pix);
data = pixGetData(pix);
ppixel = data + y * wpl + x;
if (prval) *prval = GET_DATA_BYTE(ppixel, COLOR_RED);
if (pgval) *pgval = GET_DATA_BYTE(ppixel, COLOR_GREEN);
if (pbval) *pbval = GET_DATA_BYTE(ppixel, COLOR_BLUE);
return 0;
}
/*!
* \brief pixSetRGBPixel()
*
* \param[in] pix 32 bpp rgb
* \param[in] x,y pixel coords
* \param[in] rval red component
* \param[in] gval green component
* \param[in] bval blue component
* \return 0 if OK; 1 or 2 on error
*
* Notes:
* (1) If the point is outside the image, this returns an error (2),
* with 0 in %pval. To avoid spamming output, it fails silently.
*/
l_ok
pixSetRGBPixel(PIX *pix,
l_int32 x,
l_int32 y,
l_int32 rval,
l_int32 gval,
l_int32 bval)
{
l_int32 w, h, d, wpl;
l_uint32 pixel;
l_uint32 *data, *line;
PROCNAME("pixSetRGBPixel");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixGetDimensions(pix, &w, &h, &d);
if (d != 32)
return ERROR_INT("pix not 32 bpp", procName, 1);
if (x < 0 || x >= w || y < 0 || y >= h)
return 2;
wpl = pixGetWpl(pix);
data = pixGetData(pix);
line = data + y * wpl;
composeRGBPixel(rval, gval, bval, &pixel);
*(line + x) = pixel;
return 0;
}
/*!
* \brief pixGetRandomPixel()
*
* \param[in] pix any depth; can be colormapped
* \param[out] pval [optional] pixel value
* \param[out] px [optional] x coordinate chosen; can be null
* \param[out] py [optional] y coordinate chosen; can be null
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) If the pix is colormapped, it returns the rgb value.
* </pre>
*/
l_ok
pixGetRandomPixel(PIX *pix,
l_uint32 *pval,
l_int32 *px,
l_int32 *py)
{
l_int32 w, h, x, y, rval, gval, bval;
l_uint32 val;
PIXCMAP *cmap;
PROCNAME("pixGetRandomPixel");
if (pval) *pval = 0;
if (px) *px = 0;
if (py) *py = 0;
if (!pval && !px && !py)
return ERROR_INT("no output requested", procName, 1);
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixGetDimensions(pix, &w, &h, NULL);
x = rand() % w;
y = rand() % h;
if (px) *px = x;
if (py) *py = y;
if (pval) {
pixGetPixel(pix, x, y, &val);
if ((cmap = pixGetColormap(pix)) != NULL) {
pixcmapGetColor(cmap, val, &rval, &gval, &bval);
composeRGBPixel(rval, gval, bval, pval);
} else {
*pval = val;
}
}
return 0;
}
/*!
* \brief pixClearPixel()
*
* \param[in] pix any depth; warning if colormapped
* \param[in] x,y pixel coords
* \return 0 if OK; 1 or 2 on error.
*
* Notes:
* (1) If the point is outside the image, this returns an error (2),
* with 0 in %pval. To avoid spamming output, it fails silently.
*/
l_ok
pixClearPixel(PIX *pix,
l_int32 x,
l_int32 y)
{
l_int32 w, h, d, wpl;
l_uint32 *line, *data;
PROCNAME("pixClearPixel");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if (pixGetColormap(pix))
L_WARNING("cmapped: setting to 0 may not be intended\n", procName);
pixGetDimensions(pix, &w, &h, &d);
if (x < 0 || x >= w || y < 0 || y >= h)
return 2;
wpl = pixGetWpl(pix);
data = pixGetData(pix);
line = data + y * wpl;
switch (d)
{
case 1:
CLEAR_DATA_BIT(line, x);
break;
case 2:
CLEAR_DATA_DIBIT(line, x);
break;
case 4:
CLEAR_DATA_QBIT(line, x);
break;
case 8:
SET_DATA_BYTE(line, x, 0);
break;
case 16:
SET_DATA_TWO_BYTES(line, x, 0);
break;
case 32:
line[x] = 0;
break;
default:
return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", procName, 1);
}
return 0;
}
/*!
* \brief pixFlipPixel()
*
* \param[in] pix any depth, warning if colormapped
* \param[in] x,y pixel coords
* \return 0 if OK; 1 or 2 on error
*
* Notes:
* (1) If the point is outside the image, this returns an error (2),
* with 0 in %pval. To avoid spamming output, it fails silently.
*/
l_ok
pixFlipPixel(PIX *pix,
l_int32 x,
l_int32 y)
{
l_int32 w, h, d, wpl;
l_uint32 val;
l_uint32 *line, *data;
PROCNAME("pixFlipPixel");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if (pixGetColormap(pix))
L_WARNING("cmapped: setting to 0 may not be intended\n", procName);
pixGetDimensions(pix, &w, &h, &d);
if (x < 0 || x >= w || y < 0 || y >= h)
return 2;
data = pixGetData(pix);
wpl = pixGetWpl(pix);
line = data + y * wpl;
switch (d)
{
case 1:
val = GET_DATA_BIT(line, x);
if (val)
CLEAR_DATA_BIT(line, x);
else
SET_DATA_BIT(line, x);
break;
case 2:
val = GET_DATA_DIBIT(line, x);
val ^= 0x3;
SET_DATA_DIBIT(line, x, val);
break;
case 4:
val = GET_DATA_QBIT(line, x);
val ^= 0xf;
SET_DATA_QBIT(line, x, val);
break;
case 8:
val = GET_DATA_BYTE(line, x);
val ^= 0xff;
SET_DATA_BYTE(line, x, val);
break;
case 16:
val = GET_DATA_TWO_BYTES(line, x);
val ^= 0xffff;
SET_DATA_TWO_BYTES(line, x, val);
break;
case 32:
val = line[x] ^ 0xffffffff;
line[x] = val;
break;
default:
return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", procName, 1);
}
return 0;
}
/*!
* \brief setPixelLow()
*
* \param[in] line ptr to beginning of line,
* \param[in] x pixel location in line
* \param[in] depth bpp
* \param[in] val to be inserted
* \return void
*
* <pre>
* Notes:
* (1) Caution: input variables are not checked!
* </pre>
*/
void
setPixelLow(l_uint32 *line,
l_int32 x,
l_int32 depth,
l_uint32 val)
{
switch (depth)
{
case 1:
if (val)
SET_DATA_BIT(line, x);
else
CLEAR_DATA_BIT(line, x);
break;
case 2:
SET_DATA_DIBIT(line, x, val);
break;
case 4:
SET_DATA_QBIT(line, x, val);
break;
case 8:
SET_DATA_BYTE(line, x, val);
break;
case 16:
SET_DATA_TWO_BYTES(line, x, val);
break;
case 32:
line[x] = val;
break;
default:
fprintf(stderr, "illegal depth in setPixelLow()\n");
}
return;
}
/*-------------------------------------------------------------*
* Find black or white value *
*-------------------------------------------------------------*/
/*!
* \brief pixGetBlackOrWhiteVal()
*
* \param[in] pixs all depths; cmap ok
* \param[in] op L_GET_BLACK_VAL, L_GET_WHITE_VAL
* \param[out] pval pixel value
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) Side effect. For a colormapped image, if the requested
* color is not present and there is room to add it in the cmap,
* it is added and the new index is returned. If there is no room,
* the index of the closest color in intensity is returned.
* </pre>
*/
l_ok
pixGetBlackOrWhiteVal(PIX *pixs,
l_int32 op,
l_uint32 *pval)
{
l_int32 d, val;
PIXCMAP *cmap;
PROCNAME("pixGetBlackOrWhiteVal");
if (!pval)
return ERROR_INT("&val not defined", procName, 1);
*pval = 0;
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
if (op != L_GET_BLACK_VAL && op != L_GET_WHITE_VAL)
return ERROR_INT("invalid op", procName, 1);
cmap = pixGetColormap(pixs);
d = pixGetDepth(pixs);
if (!cmap) {
if ((d == 1 && op == L_GET_WHITE_VAL) ||
(d > 1 && op == L_GET_BLACK_VAL)) { /* min val */
val = 0;
} else { /* max val */
val = (d == 32) ? 0xffffff00 : (1 << d) - 1;
}
} else { /* handle colormap */
if (op == L_GET_BLACK_VAL)
pixcmapAddBlackOrWhite(cmap, 0, &val);
else /* L_GET_WHITE_VAL */
pixcmapAddBlackOrWhite(cmap, 1, &val);
}
*pval = val;
return 0;
}
/*-------------------------------------------------------------*
* Full image clear/set/set-to-arbitrary-value/invert *
*-------------------------------------------------------------*/
/*!
* \brief pixClearAll()
*
* \param[in] pix all depths; use cmapped with caution
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) Clears all data to 0. For 1 bpp, this is white; for grayscale
* or color, this is black.
* (2) Caution: for colormapped pix, this sets the color to the first
* one in the colormap. Be sure that this is the intended color!
* </pre>
*/
l_ok
pixClearAll(PIX *pix)
{
PROCNAME("pixClearAll");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixRasterop(pix, 0, 0, pixGetWidth(pix), pixGetHeight(pix),
PIX_CLR, NULL, 0, 0);
return 0;
}
/*!
* \brief pixSetAll()
*
* \param[in] pix all depths; use cmapped with caution
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) Sets all data to 1. For 1 bpp, this is black; for grayscale
* or color, this is white.
* (2) Caution: for colormapped pix, this sets the pixel value to the
* maximum value supported by the colormap: 2^d - 1. However, this
* color may not be defined, because the colormap may not be full.
* </pre>
*/
l_ok
pixSetAll(PIX *pix)
{
l_int32 n;
PIXCMAP *cmap;
PROCNAME("pixSetAll");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if ((cmap = pixGetColormap(pix)) != NULL) {
n = pixcmapGetCount(cmap);
if (n < cmap->nalloc) /* cmap is not full */
return ERROR_INT("cmap entry does not exist", procName, 1);
}
pixRasterop(pix, 0, 0, pixGetWidth(pix), pixGetHeight(pix),
PIX_SET, NULL, 0, 0);
return 0;
}
/*!
* \brief pixSetAllGray()
*
* \param[in] pix all depths, cmap ok
* \param[in] grayval in range 0 ... 255
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) N.B. For all images, %grayval == 0 represents black and
* %grayval == 255 represents white.
* (2) For depth < 8, we do our best to approximate the gray level.
* For 1 bpp images, any %grayval < 128 is black; >= 128 is white.
* For 32 bpp images, each r,g,b component is set to %grayval,
* and the alpha component is preserved.
* (3) If pix is colormapped, it adds the gray value, replicated in
* all components, to the colormap if it's not there and there
* is room. If the colormap is full, it finds the closest color in
* L2 distance of components. This index is written to all pixels.
* </pre>
*/
l_ok
pixSetAllGray(PIX *pix,
l_int32 grayval)
{
l_int32 d, spp, index;
l_uint32 val32;
PIX *alpha;
PIXCMAP *cmap;
PROCNAME("pixSetAllGray");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if (grayval < 0) {
L_WARNING("grayval < 0; setting to 0\n", procName);
grayval = 0;
} else if (grayval > 255) {
L_WARNING("grayval > 255; setting to 255\n", procName);
grayval = 255;
}
/* Handle the colormap case */
cmap = pixGetColormap(pix);
if (cmap) {
pixcmapAddNearestColor(cmap, grayval, grayval, grayval, &index);
pixSetAllArbitrary(pix, index);
return 0;
}
/* Non-cmapped */
d = pixGetDepth(pix);
spp = pixGetSpp(pix);
if (d == 1) {
if (grayval < 128) /* black */
pixSetAll(pix);
else
pixClearAll(pix); /* white */
} else if (d < 8) {
grayval >>= 8 - d;
pixSetAllArbitrary(pix, grayval);
} else if (d == 8) {
pixSetAllArbitrary(pix, grayval);
} else if (d == 16) {
grayval |= (grayval << 8);
pixSetAllArbitrary(pix, grayval);
} else if (d == 32 && spp == 3) {
composeRGBPixel(grayval, grayval, grayval, &val32);
pixSetAllArbitrary(pix, val32);
} else if (d == 32 && spp == 4) {
alpha = pixGetRGBComponent(pix, L_ALPHA_CHANNEL);
composeRGBPixel(grayval, grayval, grayval, &val32);
pixSetAllArbitrary(pix, val32);
pixSetRGBComponent(pix, alpha, L_ALPHA_CHANNEL);
pixDestroy(&alpha);
} else {
L_ERROR("invalid depth: %d\n", procName, d);
return 1;
}
return 0;
}
/*!
* \brief pixSetAllArbitrary()
*
* \param[in] pix all depths; use cmapped with caution
* \param[in] val value to set all pixels
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) Caution 1! For colormapped pix, %val is used as an index
* into a colormap. Be sure that index refers to the intended color.
* If the color is not in the colormap, you should first add it
* and then call this function.
* (2) Caution 2! For 32 bpp pix, the interpretation of the LSB
* of %val depends on whether spp == 3 (RGB) or spp == 4 (RGBA).
* For RGB, the LSB is ignored in image transformations.
* For RGBA, the LSB is interpreted as the alpha (transparency)
* component; full transparency has alpha == 0x0, whereas
* full opacity has alpha = 0xff. An RGBA image with full
* opacity behaves like an RGB image.
* (3) As an example of (2), suppose you want to initialize a 32 bpp
* pix with partial opacity, say 0xee337788. If the pix is 3 spp,
* the 0x88 alpha component will be ignored and may be changed
* in subsequent processing. However, if the pix is 4 spp, the
* alpha component will be retained and used. The function
* pixCreate(w, h, 32) makes an RGB image by default, and
* pixSetSpp(pix, 4) can be used to promote an RGB image to RGBA.
* </pre>
*/
l_ok
pixSetAllArbitrary(PIX *pix,
l_uint32 val)
{
l_int32 n, i, j, w, h, d, wpl, npix;
l_uint32 maxval, wordval;
l_uint32 *data, *line;
PIXCMAP *cmap;
PROCNAME("pixSetAllArbitrary");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
/* If colormapped, make sure that val is less than the size
* of the cmap array. */
if ((cmap = pixGetColormap(pix)) != NULL) {
n = pixcmapGetCount(cmap);
if (val >= n) {
L_WARNING("index not in colormap; using last color\n", procName);
val = n - 1;
}
}
/* Make sure val isn't too large for the pixel depth.
* If it is too large, set the pixel color to white. */
pixGetDimensions(pix, &w, &h, &d);
if (d < 32) {
maxval = (1 << d) - 1;
if (val > maxval) {
L_WARNING("val = %d too large for depth; using maxval = %d\n",
procName, val, maxval);
val = maxval;
}
}
/* Set up word to tile with */
wordval = 0;
npix = 32 / d; /* number of pixels per 32 bit word */
for (j = 0; j < npix; j++)
wordval |= (val << (j * d));
wpl = pixGetWpl(pix);
data = pixGetData(pix);
for (i = 0; i < h; i++) {
line = data + i * wpl;
for (j = 0; j < wpl; j++) {
*(line + j) = wordval;
}
}
return 0;
}
/*!
* \brief pixSetBlackOrWhite()
*
* \param[in] pixs all depths; cmap ok
* \param[in] op L_SET_BLACK, L_SET_WHITE
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) Function for setting all pixels in an image to either black
* or white.
* (2) If pixs is colormapped, it adds black or white to the
* colormap if it's not there and there is room. If the colormap
* is full, it finds the closest color in intensity.
* This index is written to all pixels.
* </pre>
*/
l_ok
pixSetBlackOrWhite(PIX *pixs,
l_int32 op)
{
l_int32 d, index;
PIXCMAP *cmap;
PROCNAME("pixSetBlackOrWhite");
if (!pixs)
return ERROR_INT("pix not defined", procName, 1);
if (op != L_SET_BLACK && op != L_SET_WHITE)
return ERROR_INT("invalid op", procName, 1);
cmap = pixGetColormap(pixs);
d = pixGetDepth(pixs);
if (!cmap) {
if ((d == 1 && op == L_SET_BLACK) || (d > 1 && op == L_SET_WHITE))
pixSetAll(pixs);
else
pixClearAll(pixs);
} else { /* handle colormap */
if (op == L_SET_BLACK)
pixcmapAddBlackOrWhite(cmap, 0, &index);
else /* L_SET_WHITE */
pixcmapAddBlackOrWhite(cmap, 1, &index);
pixSetAllArbitrary(pixs, index);
}
return 0;
}
/*!
* \brief pixSetComponentArbitrary()
*
* \param[in] pix 32 bpp
* \param[in] comp COLOR_RED, COLOR_GREEN, COLOR_BLUE, L_ALPHA_CHANNEL
* \param[in] val value to set this component
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) For example, this can be used to set the alpha component to opaque:
* pixSetComponentArbitrary(pix, L_ALPHA_CHANNEL, 255)
* </pre>
*/
l_ok
pixSetComponentArbitrary(PIX *pix,
l_int32 comp,
l_int32 val)
{
l_int32 i, nwords;
l_uint32 mask1, mask2;
l_uint32 *data;
PROCNAME("pixSetComponentArbitrary");
if (!pix || pixGetDepth(pix) != 32)
return ERROR_INT("pix not defined or not 32 bpp", procName, 1);
if (comp != COLOR_RED && comp != COLOR_GREEN && comp != COLOR_BLUE &&
comp != L_ALPHA_CHANNEL)
return ERROR_INT("invalid component", procName, 1);
if (val < 0 || val > 255)
return ERROR_INT("val not in [0 ... 255]", procName, 1);
mask1 = ~(255 << (8 * (3 - comp)));
mask2 = val << (8 * (3 - comp));
nwords = pixGetHeight(pix) * pixGetWpl(pix);
data = pixGetData(pix);
for (i = 0; i < nwords; i++) {
data[i] &= mask1; /* clear out the component */
data[i] |= mask2; /* insert the new component value */
}
return 0;
}
/*-------------------------------------------------------------*
* Rectangular region clear/set/set-to-arbitrary-value *
*-------------------------------------------------------------*/
/*!
* \brief pixClearInRect()
*
* \param[in] pix all depths; can be cmapped
* \param[in] box in which all pixels will be cleared
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) Clears all data in rect to 0. For 1 bpp, this is white;
* for grayscale or color, this is black.
* (2) Caution: for colormapped pix, this sets the color to the first
* one in the colormap. Be sure that this is the intended color!
* </pre>
*/
l_ok
pixClearInRect(PIX *pix,
BOX *box)
{
l_int32 x, y, w, h;
PROCNAME("pixClearInRect");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if (!box)
return ERROR_INT("box not defined", procName, 1);
boxGetGeometry(box, &x, &y, &w, &h);
pixRasterop(pix, x, y, w, h, PIX_CLR, NULL, 0, 0);
return 0;
}
/*!
* \brief pixSetInRect()
*
* \param[in] pix all depths, can be cmapped
* \param[in] box in which all pixels will be set
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) Sets all data in rect to 1. For 1 bpp, this is black;
* for grayscale or color, this is white.
* (2) Caution: for colormapped pix, this sets the pixel value to the
* maximum value supported by the colormap: 2^d - 1. However, this
* color may not be defined, because the colormap may not be full.
* </pre>
*/
l_ok
pixSetInRect(PIX *pix,
BOX *box)
{
l_int32 n, x, y, w, h;
PIXCMAP *cmap;
PROCNAME("pixSetInRect");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if (!box)
return ERROR_INT("box not defined", procName, 1);
if ((cmap = pixGetColormap(pix)) != NULL) {
n = pixcmapGetCount(cmap);
if (n < cmap->nalloc) /* cmap is not full */
return ERROR_INT("cmap entry does not exist", procName, 1);
}
boxGetGeometry(box, &x, &y, &w, &h);
pixRasterop(pix, x, y, w, h, PIX_SET, NULL, 0, 0);
return 0;
}
/*!
* \brief pixSetInRectArbitrary()
*
* \param[in] pix all depths; can be cmapped
* \param[in] box in which all pixels will be set to val
* \param[in] val value to set all pixels
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) For colormapped pix, be sure the value is the intended
* one in the colormap.
* (2) Caution: for colormapped pix, this sets each pixel in the
* rect to the color at the index equal to val. Be sure that
* this index exists in the colormap and that it is the intended one!
* </pre>
*/
l_ok
pixSetInRectArbitrary(PIX *pix,
BOX *box,
l_uint32 val)
{
l_int32 n, x, y, xstart, xend, ystart, yend, bw, bh, w, h, d, wpl, maxval;
l_uint32 *data, *line;
BOX *boxc;
PIXCMAP *cmap;
PROCNAME("pixSetInRectArbitrary");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if (!box)
return ERROR_INT("box not defined", procName, 1);
pixGetDimensions(pix, &w, &h, &d);
if (d != 1 && d != 2 && d != 4 && d !=8 && d != 16 && d != 32)
return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", procName, 1);
if ((cmap = pixGetColormap(pix)) != NULL) {
n = pixcmapGetCount(cmap);
if (val >= n) {
L_WARNING("index not in colormap; using last color\n", procName);
val = n - 1;
}
}
maxval = (d == 32) ? 0xffffff00 : (1 << d) - 1;
if (val > maxval) val = maxval;
/* Handle the simple cases: the min and max values */
if (val == 0) {
pixClearInRect(pix, box);
return 0;
}
if (d == 1 ||
(d == 2 && val == 3) ||
(d == 4 && val == 0xf) ||
(d == 8 && val == 0xff) ||
(d == 16 && val == 0xffff) ||
(d == 32 && ((val ^ 0xffffff00) >> 8 == 0))) {
pixSetInRect(pix, box);
return 0;
}
/* Find the overlap of box with the input pix */
if ((boxc = boxClipToRectangle(box, w, h)) == NULL)
return ERROR_INT("no overlap of box with image", procName, 1);
boxGetGeometry(boxc, &xstart, &ystart, &bw, &bh);
xend = xstart + bw - 1;
yend = ystart + bh - 1;
boxDestroy(&boxc);
wpl = pixGetWpl(pix);
data = pixGetData(pix);
for (y = ystart; y <= yend; y++) {
line = data + y * wpl;
for (x = xstart; x <= xend; x++) {
switch(d)
{
case 2:
SET_DATA_DIBIT(line, x, val);
break;
case 4:
SET_DATA_QBIT(line, x, val);
break;
case 8:
SET_DATA_BYTE(line, x, val);
break;
case 16:
SET_DATA_TWO_BYTES(line, x, val);
break;
case 32:
line[x] = val;
break;
default:
return ERROR_INT("depth not 2|4|8|16|32 bpp", procName, 1);
}
}
}
return 0;
}
/*!
* \brief pixBlendInRect()
*
* \param[in] pixs 32 bpp rgb
* \param[in] box [optional] in which all pixels will be blended
* \param[in] val blend value; 0xrrggbb00
* \param[in] fract fraction of color to be blended with each pixel in pixs
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) This is an in-place function. It blends the input color %val
* with the pixels in pixs in the specified rectangle.
* If no rectangle is specified, it blends over the entire image.
* </pre>
*/
l_ok
pixBlendInRect(PIX *pixs,
BOX *box,
l_uint32 val,
l_float32 fract)
{
l_int32 i, j, bx, by, bw, bh, w, h, wpls;
l_int32 prval, pgval, pbval, rval, gval, bval;
l_uint32 val32;
l_uint32 *datas, *lines;
PROCNAME("pixBlendInRect");
if (!pixs || pixGetDepth(pixs) != 32)
return ERROR_INT("pixs not defined or not 32 bpp", procName, 1);
extractRGBValues(val, &rval, &gval, &bval);
pixGetDimensions(pixs, &w, &h, NULL);
datas = pixGetData(pixs);
wpls = pixGetWpl(pixs);
if (!box) {
for (i = 0; i < h; i++) { /* scan over box */
lines = datas + i * wpls;
for (j = 0; j < w; j++) {
val32 = *(lines + j);
extractRGBValues(val32, &prval, &pgval, &pbval);
prval = (l_int32)((1. - fract) * prval + fract * rval);
pgval = (l_int32)((1. - fract) * pgval + fract * gval);
pbval = (l_int32)((1. - fract) * pbval + fract * bval);
composeRGBPixel(prval, pgval, pbval, &val32);
*(lines + j) = val32;
}
}
return 0;
}
boxGetGeometry(box, &bx, &by, &bw, &bh);
for (i = 0; i < bh; i++) { /* scan over box */
if (by + i < 0 || by + i >= h) continue;
lines = datas + (by + i) * wpls;
for (j = 0; j < bw; j++) {
if (bx + j < 0 || bx + j >= w) continue;
val32 = *(lines + bx + j);
extractRGBValues(val32, &prval, &pgval, &pbval);
prval = (l_int32)((1. - fract) * prval + fract * rval);
pgval = (l_int32)((1. - fract) * pgval + fract * gval);
pbval = (l_int32)((1. - fract) * pbval + fract * bval);
composeRGBPixel(prval, pgval, pbval, &val32);
*(lines + bx + j) = val32;
}
}
return 0;
}
/*-------------------------------------------------------------*
* Set pad bits *
*-------------------------------------------------------------*/
/*!
* \brief pixSetPadBits()
*
* \param[in] pix 1, 2, 4, 8, 16, 32 bpp
* \param[in] val 0 or 1
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) The pad bits are the bits that expand each scanline to a
* multiple of 32 bits. They are usually not used in
* image processing operations. When boundary conditions
* are important, as in seedfill, they must be set properly.
* (2) This sets the value of the pad bits (if any) in the last
* 32-bit word in each scanline.
* (3) For 32 bpp pix, there are no pad bits, so this is a no-op.
* (4) When writing formatted output, such as tiff, png or jpeg,
* the pad bits have no effect on the raster image that is
* generated by reading back from the file. However, in some
* cases, the compressed file itself will depend on the pad
* bits. This is seen, for example, in Windows with 2 and 4 bpp
* tiff-compressed images that have pad bits on each scanline.
* It is sometimes convenient to use a golden file with a
* byte-by-byte check to verify invariance. Consequently,
* and because setting the pad bits is cheap, the pad bits are
* set to 0 before writing these compressed files.
* </pre>
*/
l_ok
pixSetPadBits(PIX *pix,
l_int32 val)
{
l_int32 i, w, h, d, wpl, endbits, fullwords;
l_uint32 mask;
l_uint32 *data, *pword;
PROCNAME("pixSetPadBits");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixGetDimensions(pix, &w, &h, &d);
if (d == 32) /* no padding exists for 32 bpp */
return 0;
data = pixGetData(pix);
wpl = pixGetWpl(pix);
endbits = 32 - (((l_int64)w * d) % 32);
if (endbits == 32) /* no partial word */
return 0;
fullwords = (1LL * w * d) / 32;
mask = rmask32[endbits];
if (val == 0)
mask = ~mask;
for (i = 0; i < h; i++) {
pword = data + i * wpl + fullwords;
if (val == 0) /* clear */
*pword = *pword & mask;
else /* set */
*pword = *pword | mask;
}
return 0;
}
/*!
* \brief pixSetPadBitsBand()
*
* \param[in] pix 1, 2, 4, 8, 16, 32 bpp
* \param[in] by starting y value of band
* \param[in] bh height of band
* \param[in] val 0 or 1
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) The pad bits are the bits that expand each scanline to a
* multiple of 32 bits. They are usually not used in
* image processing operations. When boundary conditions
* are important, as in seedfill, they must be set properly.
* (2) This sets the value of the pad bits (if any) in the last
* 32-bit word in each scanline, within the specified
* band of raster lines.
* (3) For 32 bpp pix, there are no pad bits, so this is a no-op.
* </pre>
*/
l_ok
pixSetPadBitsBand(PIX *pix,
l_int32 by,
l_int32 bh,
l_int32 val)
{
l_int32 i, w, h, d, wpl, endbits, fullwords;
l_uint32 mask;
l_uint32 *data, *pword;
PROCNAME("pixSetPadBitsBand");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
pixGetDimensions(pix, &w, &h, &d);
if (d == 32) /* no padding exists for 32 bpp */
return 0;
if (by < 0)
by = 0;
if (by >= h)
return ERROR_INT("start y not in image", procName, 1);
if (by + bh > h)
bh = h - by;
data = pixGetData(pix);
wpl = pixGetWpl(pix);
endbits = 32 - (((l_int64)w * d) % 32);
if (endbits == 32) /* no partial word */
return 0;
fullwords = (l_int64)w * d / 32;
mask = rmask32[endbits];
if (val == 0)
mask = ~mask;
for (i = by; i < by + bh; i++) {
pword = data + i * wpl + fullwords;
if (val == 0) /* clear */
*pword = *pword & mask;
else /* set */
*pword = *pword | mask;
}
return 0;
}
/*-------------------------------------------------------------*
* Set border pixels *
*-------------------------------------------------------------*/
/*!
* \brief pixSetOrClearBorder()
*
* \param[in] pixs all depths
* \param[in] left, right, top, bot amount to set or clear
* \param[in] op operation PIX_SET or PIX_CLR
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) The border region is defined to be the region in the
* image within a specific distance of each edge. Here, we
* allow the pixels within a specified distance of each
* edge to be set independently. This either sets or
* clears all pixels in the border region.
* (2) For binary images, use PIX_SET for black and PIX_CLR for white.
* (3) For grayscale or color images, use PIX_SET for white
* and PIX_CLR for black.
* </pre>
*/
l_ok
pixSetOrClearBorder(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot,
l_int32 op)
{
l_int32 w, h;
PROCNAME("pixSetOrClearBorder");
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
if (op != PIX_SET && op != PIX_CLR)
return ERROR_INT("op must be PIX_SET or PIX_CLR", procName, 1);
pixGetDimensions(pixs, &w, &h, NULL);
pixRasterop(pixs, 0, 0, left, h, op, NULL, 0, 0);
pixRasterop(pixs, w - right, 0, right, h, op, NULL, 0, 0);
pixRasterop(pixs, 0, 0, w, top, op, NULL, 0, 0);
pixRasterop(pixs, 0, h - bot, w, bot, op, NULL, 0, 0);
return 0;
}
/*!
* \brief pixSetBorderVal()
*
* \param[in] pixs 8, 16 or 32 bpp
* \param[in] left, right, top, bot amount to set
* \param[in] val value to set at each border pixel
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) The border region is defined to be the region in the
* image within a specific distance of each edge. Here, we
* allow the pixels within a specified distance of each
* edge to be set independently. This sets the pixels
* in the border region to the given input value.
* (2) For efficiency, use pixSetOrClearBorder() if
* you're setting the border to either black or white.
* (3) If d != 32, the input value should be masked off
* to the appropriate number of least significant bits.
* (4) The code is easily generalized for 2 or 4 bpp.
* </pre>
*/
l_ok
pixSetBorderVal(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot,
l_uint32 val)
{
l_int32 w, h, d, wpls, i, j, bstart, rstart;
l_uint32 *datas, *lines;
PROCNAME("pixSetBorderVal");
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
pixGetDimensions(pixs, &w, &h, &d);
if (d != 8 && d != 16 && d != 32)
return ERROR_INT("depth must be 8, 16 or 32 bpp", procName, 1);
datas = pixGetData(pixs);
wpls = pixGetWpl(pixs);
if (d == 8) {
val &= 0xff;
for (i = 0; i < top; i++) {
lines = datas + i * wpls;
for (j = 0; j < w; j++)
SET_DATA_BYTE(lines, j, val);
}
rstart = w - right;
bstart = h - bot;
for (i = top; i < bstart; i++) {
lines = datas + i * wpls;
for (j = 0; j < left; j++)
SET_DATA_BYTE(lines, j, val);
for (j = rstart; j < w; j++)
SET_DATA_BYTE(lines, j, val);
}
for (i = bstart; i < h; i++) {
lines = datas + i * wpls;
for (j = 0; j < w; j++)
SET_DATA_BYTE(lines, j, val);
}
} else if (d == 16) {
val &= 0xffff;
for (i = 0; i < top; i++) {
lines = datas + i * wpls;
for (j = 0; j < w; j++)
SET_DATA_TWO_BYTES(lines, j, val);
}
rstart = w - right;
bstart = h - bot;
for (i = top; i < bstart; i++) {
lines = datas + i * wpls;
for (j = 0; j < left; j++)
SET_DATA_TWO_BYTES(lines, j, val);
for (j = rstart; j < w; j++)
SET_DATA_TWO_BYTES(lines, j, val);
}
for (i = bstart; i < h; i++) {
lines = datas + i * wpls;
for (j = 0; j < w; j++)
SET_DATA_TWO_BYTES(lines, j, val);
}
} else { /* d == 32 */
for (i = 0; i < top; i++) {
lines = datas + i * wpls;
for (j = 0; j < w; j++)
*(lines + j) = val;
}
rstart = w - right;
bstart = h - bot;
for (i = top; i < bstart; i++) {
lines = datas + i * wpls;
for (j = 0; j < left; j++)
*(lines + j) = val;
for (j = rstart; j < w; j++)
*(lines + j) = val;
}
for (i = bstart; i < h; i++) {
lines = datas + i * wpls;
for (j = 0; j < w; j++)
*(lines + j) = val;
}
}
return 0;
}
/*!
* \brief pixSetBorderRingVal()
*
* \param[in] pixs any depth; cmap OK
* \param[in] dist distance from outside; must be > 0; first ring is 1
* \param[in] val value to set at each border pixel
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) The rings are single-pixel-wide rectangular sets of
* pixels at a given distance from the edge of the pix.
* This sets all pixels in a given ring to a value.
* </pre>
*/
l_ok
pixSetBorderRingVal(PIX *pixs,
l_int32 dist,
l_uint32 val)
{
l_int32 w, h, d, i, j, xend, yend;
PROCNAME("pixSetBorderRingVal");
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
if (dist < 1)
return ERROR_INT("dist must be > 0", procName, 1);
pixGetDimensions(pixs, &w, &h, &d);
if (w < 2 * dist + 1 || h < 2 * dist + 1)
return ERROR_INT("ring doesn't exist", procName, 1);
if (d < 32 && (val >= (1 << d)))
return ERROR_INT("invalid pixel value", procName, 1);
xend = w - dist;
yend = h - dist;
for (j = dist - 1; j <= xend; j++)
pixSetPixel(pixs, j, dist - 1, val);
for (j = dist - 1; j <= xend; j++)
pixSetPixel(pixs, j, yend, val);
for (i = dist - 1; i <= yend; i++)
pixSetPixel(pixs, dist - 1, i, val);
for (i = dist - 1; i <= yend; i++)
pixSetPixel(pixs, xend, i, val);
return 0;
}
/*!
* \brief pixSetMirroredBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot number of pixels to set
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) This applies what is effectively mirror boundary conditions
* to a border region in the image. It is in-place.
* (2) This is useful for setting pixels near the border to a
* value representative of the near pixels to the interior.
* (3) The general pixRasterop() is used for an in-place operation here
* because there is no overlap between the src and dest rectangles.
* </pre>
*/
l_ok
pixSetMirroredBorder(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot)
{
l_int32 i, j, w, h;
PROCNAME("pixSetMirroredBorder");
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
pixGetDimensions(pixs, &w, &h, NULL);
for (j = 0; j < left; j++)
pixRasterop(pixs, left - 1 - j, top, 1, h - top - bot, PIX_SRC,
pixs, left + j, top);
for (j = 0; j < right; j++)
pixRasterop(pixs, w - right + j, top, 1, h - top - bot, PIX_SRC,
pixs, w - right - 1 - j, top);
for (i = 0; i < top; i++)
pixRasterop(pixs, 0, top - 1 - i, w, 1, PIX_SRC,
pixs, 0, top + i);
for (i = 0; i < bot; i++)
pixRasterop(pixs, 0, h - bot + i, w, 1, PIX_SRC,
pixs, 0, h - bot - 1 - i);
return 0;
}
/*!
* \brief pixCopyBorder()
*
* \param[in] pixd all depths; colormap ok; can be NULL
* \param[in] pixs same depth and size as pixd
* \param[in] left, right, top, bot number of pixels to copy
* \return pixd, or NULL on error if pixd is not defined
*
* <pre>
* Notes:
* (1) pixd can be null, but otherwise it must be the same size
* and depth as pixs. Always returns pixd.
* (2) This is useful in situations where by setting a few border
* pixels we can avoid having to copy all pixels in pixs into
* pixd as an initialization step for some operation.
* Nevertheless, for safety, if making a new pixd, all the
* non-border pixels are initialized to 0.
* </pre>
*/
PIX *
pixCopyBorder(PIX *pixd,
PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot)
{
l_int32 w, h;
PROCNAME("pixCopyBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, pixd);
if (pixd) {
if (pixd == pixs) {
L_WARNING("same: nothing to do\n", procName);
return pixd;
} else if (!pixSizesEqual(pixs, pixd)) {
return (PIX *)ERROR_PTR("pixs and pixd sizes differ",
procName, pixd);
}
} else {
if ((pixd = pixCreateTemplate(pixs)) == NULL)
return (PIX *)ERROR_PTR("pixd not made", procName, pixd);
}
pixGetDimensions(pixs, &w, &h, NULL);
pixRasterop(pixd, 0, 0, left, h, PIX_SRC, pixs, 0, 0);
pixRasterop(pixd, w - right, 0, right, h, PIX_SRC, pixs, w - right, 0);
pixRasterop(pixd, 0, 0, w, top, PIX_SRC, pixs, 0, 0);
pixRasterop(pixd, 0, h - bot, w, bot, PIX_SRC, pixs, 0, h - bot);
return pixd;
}
/*-------------------------------------------------------------*
* Add and remove border *
*-------------------------------------------------------------*/
/*!
* \brief pixAddBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] npix number of pixels to be added to each side
* \param[in] val value of added border pixels
* \return pixd with the added exterior pixels, or NULL on error
*
* <pre>
* Notes:
* (1) See pixGetBlackOrWhiteVal() for values of black and white pixels.
* </pre>
*/
PIX *
pixAddBorder(PIX *pixs,
l_int32 npix,
l_uint32 val)
{
PROCNAME("pixAddBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
if (npix == 0)
return pixClone(pixs);
return pixAddBorderGeneral(pixs, npix, npix, npix, npix, val);
}
/*!
* \brief pixAddBlackOrWhiteBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot number of pixels added
* \param[in] op L_GET_BLACK_VAL, L_GET_WHITE_VAL
* \return pixd with the added exterior pixels, or NULL on error
*
* <pre>
* Notes:
* (1) See pixGetBlackOrWhiteVal() for possible side effect (adding
* a color to a colormap).
* (2) The only complication is that pixs may have a colormap.
* There are two ways to add the black or white border:
* (a) As done here (simplest, most efficient)
* (b) l_int32 ws, hs, d;
* pixGetDimensions(pixs, &ws, &hs, &d);
* Pix *pixd = pixCreate(ws + left + right, hs + top + bot, d);
* PixColormap *cmap = pixGetColormap(pixs);
* if (cmap != NULL)
* pixSetColormap(pixd, pixcmapCopy(cmap));
* pixSetBlackOrWhite(pixd, L_SET_WHITE); // uses cmap
* pixRasterop(pixd, left, top, ws, hs, PIX_SET, pixs, 0, 0);
* </pre>
*/
PIX *
pixAddBlackOrWhiteBorder(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot,
l_int32 op)
{
l_uint32 val;
PROCNAME("pixAddBlackOrWhiteBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
if (op != L_GET_BLACK_VAL && op != L_GET_WHITE_VAL)
return (PIX *)ERROR_PTR("invalid op", procName, NULL);
pixGetBlackOrWhiteVal(pixs, op, &val);
return pixAddBorderGeneral(pixs, left, right, top, bot, val);
}
/*!
* \brief pixAddBorderGeneral()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot number of pixels added
* \param[in] val value of added border pixels
* \return pixd with the added exterior pixels, or NULL on error
*
* <pre>
* Notes:
* (1) For binary images:
* white: val = 0
* black: val = 1
* For grayscale images:
* white: val = 2 ** d - 1
* black: val = 0
* For rgb color images:
* white: val = 0xffffff00
* black: val = 0
* For colormapped images, set val to the appropriate colormap index.
* (2) If the added border is either black or white, you can use
* pixAddBlackOrWhiteBorder()
* The black and white values for all images can be found with
* pixGetBlackOrWhiteVal()
* which, if pixs is cmapped, may add an entry to the colormap.
* Alternatively, if pixs has a colormap, you can find the index
* of the pixel whose intensity is closest to white or black:
* white: pixcmapGetRankIntensity(cmap, 1.0, &index);
* black: pixcmapGetRankIntensity(cmap, 0.0, &index);
* and use that for val.
* </pre>
*/
PIX *
pixAddBorderGeneral(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot,
l_uint32 val)
{
l_int32 ws, hs, wd, hd, d, maxval, op;
PIX *pixd;
PROCNAME("pixAddBorderGeneral");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
if (left < 0 || right < 0 || top < 0 || bot < 0)
return (PIX *)ERROR_PTR("negative border added!", procName, NULL);
pixGetDimensions(pixs, &ws, &hs, &d);
wd = ws + left + right;
hd = hs + top + bot;
if ((pixd = pixCreateNoInit(wd, hd, d)) == NULL)
return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
pixCopyResolution(pixd, pixs);
pixCopyColormap(pixd, pixs);
/* Set the new border pixels */
maxval = (d == 32) ? 0xffffff00 : (1 << d) - 1;
op = UNDEF;
if (val == 0)
op = PIX_CLR;
else if (val >= maxval)
op = PIX_SET;
if (op == UNDEF) {
pixSetAllArbitrary(pixd, val);
} else { /* just set or clear the border pixels */
pixRasterop(pixd, 0, 0, left, hd, op, NULL, 0, 0);
pixRasterop(pixd, wd - right, 0, right, hd, op, NULL, 0, 0);
pixRasterop(pixd, 0, 0, wd, top, op, NULL, 0, 0);
pixRasterop(pixd, 0, hd - bot, wd, bot, op, NULL, 0, 0);
}
/* Copy pixs into the interior */
pixRasterop(pixd, left, top, ws, hs, PIX_SRC, pixs, 0, 0);
return pixd;
}
/*!
* \brief pixRemoveBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] npix number to be removed from each of the 4 sides
* \return pixd with pixels removed around border, or NULL on error
*/
PIX *
pixRemoveBorder(PIX *pixs,
l_int32 npix)
{
PROCNAME("pixRemoveBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
if (npix == 0)
return pixClone(pixs);
return pixRemoveBorderGeneral(pixs, npix, npix, npix, npix);
}
/*!
* \brief pixRemoveBorderGeneral()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot number of pixels removed
* \return pixd with pixels removed around border, or NULL on error
*/
PIX *
pixRemoveBorderGeneral(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot)
{
l_int32 ws, hs, wd, hd, d;
PIX *pixd;
PROCNAME("pixRemoveBorderGeneral");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
if (left < 0 || right < 0 || top < 0 || bot < 0)
return (PIX *)ERROR_PTR("negative border removed!", procName, NULL);
pixGetDimensions(pixs, &ws, &hs, &d);
wd = ws - left - right;
hd = hs - top - bot;
if (wd <= 0)
return (PIX *)ERROR_PTR("width must be > 0", procName, NULL);
if (hd <= 0)
return (PIX *)ERROR_PTR("height must be > 0", procName, NULL);
if ((pixd = pixCreateNoInit(wd, hd, d)) == NULL)
return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
pixCopyResolution(pixd, pixs);
pixCopySpp(pixd, pixs);
pixCopyColormap(pixd, pixs);
pixRasterop(pixd, 0, 0, wd, hd, PIX_SRC, pixs, left, top);
if (pixGetDepth(pixs) == 32 && pixGetSpp(pixs) == 4)
pixShiftAndTransferAlpha(pixd, pixs, -left, -top);
return pixd;
}
/*!
* \brief pixRemoveBorderToSize()
*
* \param[in] pixs all depths; colormap ok
* \param[in] wd target width; use 0 if only removing from height
* \param[in] hd target height; use 0 if only removing from width
* \return pixd with pixels removed around border, or NULL on error
*
* <pre>
* Notes:
* (1) Removes pixels as evenly as possible from the sides of the
* image, leaving the central part.
* (2) Returns clone if no pixels requested removed, or the target
* sizes are larger than the image.
* </pre>
*/
PIX *
pixRemoveBorderToSize(PIX *pixs,
l_int32 wd,
l_int32 hd)
{
l_int32 w, h, top, bot, left, right, delta;
PROCNAME("pixRemoveBorderToSize");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
pixGetDimensions(pixs, &w, &h, NULL);
if ((wd <= 0 || wd >= w) && (hd <= 0 || hd >= h))
return pixClone(pixs);
left = right = (w - wd) / 2;
delta = w - 2 * left - wd;
right += delta;
top = bot = (h - hd) / 2;
delta = h - hd - 2 * top;
bot += delta;
if (wd <= 0 || wd > w)
left = right = 0;
else if (hd <= 0 || hd > h)
top = bot = 0;
return pixRemoveBorderGeneral(pixs, left, right, top, bot);
}
/*!
* \brief pixAddMirroredBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot number of pixels added
* \return pixd, or NULL on error
*
* <pre>
* Notes:
* (1) This applies what is effectively mirror boundary conditions.
* For the added border pixels in pixd, the pixels in pixs
* near the border are mirror-copied into the border region.
* (2) This is useful for avoiding special operations near
* boundaries when doing image processing operations
* such as rank filters and convolution. In use, one first
* adds mirrored pixels to each side of the image. The number
* of pixels added on each side is half the filter dimension.
* Then the image processing operations proceed over a
* region equal to the size of the original image, and
* write directly into a dest pix of the same size as pixs.
* (3) The general pixRasterop() is used for an in-place operation here
* because there is no overlap between the src and dest rectangles.
* </pre>
*/
PIX *
pixAddMirroredBorder(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot)
{
l_int32 i, j, w, h;
PIX *pixd;
PROCNAME("pixAddMirroredBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
pixGetDimensions(pixs, &w, &h, NULL);
if (left > w || right > w || top > h || bot > h)
return (PIX *)ERROR_PTR("border too large", procName, NULL);
/* Set pixels on left, right, top and bottom, in that order */
pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0);
for (j = 0; j < left; j++)
pixRasterop(pixd, left - 1 - j, top, 1, h, PIX_SRC,
pixd, left + j, top);
for (j = 0; j < right; j++)
pixRasterop(pixd, left + w + j, top, 1, h, PIX_SRC,
pixd, left + w - 1 - j, top);
for (i = 0; i < top; i++)
pixRasterop(pixd, 0, top - 1 - i, left + w + right, 1, PIX_SRC,
pixd, 0, top + i);
for (i = 0; i < bot; i++)
pixRasterop(pixd, 0, top + h + i, left + w + right, 1, PIX_SRC,
pixd, 0, top + h - 1 - i);
return pixd;
}
/*!
* \brief pixAddRepeatedBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot number of pixels added
* \return pixd, or NULL on error
*
* <pre>
* Notes:
* (1) This applies a repeated border, as if the central part of
* the image is tiled over the plane. So, for example, the
* pixels in the left border come from the right side of the image.
* (2) The general pixRasterop() is used for an in-place operation here
* because there is no overlap between the src and dest rectangles.
* </pre>
*/
PIX *
pixAddRepeatedBorder(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot)
{
l_int32 w, h;
PIX *pixd;
PROCNAME("pixAddRepeatedBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
pixGetDimensions(pixs, &w, &h, NULL);
if (left > w || right > w || top > h || bot > h)
return (PIX *)ERROR_PTR("border too large", procName, NULL);
pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0);
/* Set pixels on left, right, top and bottom, in that order */
pixRasterop(pixd, 0, top, left, h, PIX_SRC, pixd, w, top);
pixRasterop(pixd, left + w, top, right, h, PIX_SRC, pixd, left, top);
pixRasterop(pixd, 0, 0, left + w + right, top, PIX_SRC, pixd, 0, h);
pixRasterop(pixd, 0, top + h, left + w + right, bot, PIX_SRC, pixd, 0, top);
return pixd;
}
/*!
* \brief pixAddMixedBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot number of pixels added
* \return pixd, or NULL on error
*
* <pre>
* Notes:
* (1) This applies mirrored boundary conditions horizontally
* and repeated b.c. vertically.
* (2) It is specifically used for avoiding special operations
* near boundaries when convolving a hue-saturation histogram
* with a given window size. The repeated b.c. are used
* vertically for hue, and the mirrored b.c. are used
* horizontally for saturation. The number of pixels added
* on each side is approximately (but not quite) half the
* filter dimension. The image processing operations can
* then proceed over a region equal to the size of the original
* image, and write directly into a dest pix of the same
* size as pixs.
* (3) The general pixRasterop() can be used for an in-place
* operation here because there is no overlap between the
* src and dest rectangles.
* </pre>
*/
PIX *
pixAddMixedBorder(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot)
{
l_int32 j, w, h;
PIX *pixd;
PROCNAME("pixAddMixedBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
pixGetDimensions(pixs, &w, &h, NULL);
if (left > w || right > w || top > h || bot > h)
return (PIX *)ERROR_PTR("border too large", procName, NULL);
/* Set mirrored pixels on left and right;
* then set repeated pixels on top and bottom. */
pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0);
for (j = 0; j < left; j++)
pixRasterop(pixd, left - 1 - j, top, 1, h, PIX_SRC,
pixd, left + j, top);
for (j = 0; j < right; j++)
pixRasterop(pixd, left + w + j, top, 1, h, PIX_SRC,
pixd, left + w - 1 - j, top);
pixRasterop(pixd, 0, 0, left + w + right, top, PIX_SRC, pixd, 0, h);
pixRasterop(pixd, 0, top + h, left + w + right, bot, PIX_SRC, pixd, 0, top);
return pixd;
}
/*!
* \brief pixAddContinuedBorder()
*
* \param[in] pixs all depths; colormap ok
* \param[in] left, right, top, bot pixels on each side to be added
* \return pixd, or NULL on error
*
* <pre>
* Notes:
* (1) This adds pixels on each side whose values are equal to
* the value on the closest boundary pixel.
* </pre>
*/
PIX *
pixAddContinuedBorder(PIX *pixs,
l_int32 left,
l_int32 right,
l_int32 top,
l_int32 bot)
{
l_int32 i, j, w, h;
PIX *pixd;
PROCNAME("pixAddContinuedBorder");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0);
pixGetDimensions(pixs, &w, &h, NULL);
for (j = 0; j < left; j++)
pixRasterop(pixd, j, top, 1, h, PIX_SRC, pixd, left, top);
for (j = 0; j < right; j++)
pixRasterop(pixd, left + w + j, top, 1, h,
PIX_SRC, pixd, left + w - 1, top);
for (i = 0; i < top; i++)
pixRasterop(pixd, 0, i, left + w + right, 1, PIX_SRC, pixd, 0, top);
for (i = 0; i < bot; i++)
pixRasterop(pixd, 0, top + h + i, left + w + right, 1,
PIX_SRC, pixd, 0, top + h - 1);
return pixd;
}
/*-------------------------------------------------------------------*
* Helper functions using alpha *
*-------------------------------------------------------------------*/
/*!
* \brief pixShiftAndTransferAlpha()
*
* \param[in] pixd 32 bpp
* \param[in] pixs 32 bpp
* \param[in] shiftx, shifty
* \return 0 if OK; 1 on error
*/
l_ok
pixShiftAndTransferAlpha(PIX *pixd,
PIX *pixs,
l_float32 shiftx,
l_float32 shifty)
{
l_int32 w, h;
PIX *pix1, *pix2;
PROCNAME("pixShiftAndTransferAlpha");
if (!pixs || !pixd)
return ERROR_INT("pixs and pixd not both defined", procName, 1);
if (pixGetDepth(pixs) != 32 || pixGetSpp(pixs) != 4)
return ERROR_INT("pixs not 32 bpp and 4 spp", procName, 1);
if (pixGetDepth(pixd) != 32)
return ERROR_INT("pixd not 32 bpp", procName, 1);
if (shiftx == 0 && shifty == 0) {
pixCopyRGBComponent(pixd, pixs, L_ALPHA_CHANNEL);
return 0;
}
pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL);
pixGetDimensions(pixd, &w, &h, NULL);
pix2 = pixCreate(w, h, 8);
pixRasterop(pix2, 0, 0, w, h, PIX_SRC, pix1, -shiftx, -shifty);
pixSetRGBComponent(pixd, pix2, L_ALPHA_CHANNEL);
pixDestroy(&pix1);
pixDestroy(&pix2);
return 0;
}
/*!
* \brief pixDisplayLayersRGBA()
*
* \param[in] pixs cmap or 32 bpp rgba
* \param[in] val 32 bit unsigned color to use as background
* \param[in] maxw max output image width; 0 for no scaling
* \return pixd showing various image views, or NULL on error
*
* <pre>
* Notes:
* (1) Use %val == 0xffffff00 for white background.
* (2) Three views are given:
* ~ the image with a fully opaque alpha
* ~ the alpha layer
* ~ the image as it would appear with a white background.
* </pre>
*/
PIX *
pixDisplayLayersRGBA(PIX *pixs,
l_uint32 val,
l_int32 maxw)
{
l_int32 w, width;
l_float32 scalefact;
PIX *pix1, *pix2, *pixd;
PIXA *pixa;
PIXCMAP *cmap;
PROCNAME("pixDisplayLayersRGBA");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
cmap = pixGetColormap(pixs);
if (!cmap && !(pixGetDepth(pixs) == 32 && pixGetSpp(pixs) == 4))
return (PIX *)ERROR_PTR("pixs not cmap and not 32 bpp rgba",
procName, NULL);
if ((w = pixGetWidth(pixs)) == 0)
return (PIX *)ERROR_PTR("pixs width 0 !!", procName, NULL);
if (cmap)
pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_WITH_ALPHA);
else
pix1 = pixCopy(NULL, pixs);
/* Scale if necessary so the output width is not larger than maxw */
scalefact = (maxw == 0) ? 1.0 : L_MIN(1.0, (l_float32)(maxw) / w);
width = (l_int32)(scalefact * w);
pixa = pixaCreate(3);
pixSetSpp(pix1, 3);
pixaAddPix(pixa, pix1, L_INSERT); /* show the rgb values */
pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL);
pix2 = pixConvertTo32(pix1);
pixaAddPix(pixa, pix2, L_INSERT); /* show the alpha channel */
pixDestroy(&pix1);
pix1 = pixAlphaBlendUniform(pixs, (val & 0xffffff00));
pixaAddPix(pixa, pix1, L_INSERT); /* with %val color bg showing */
pixd = pixaDisplayTiledInRows(pixa, 32, width, scalefact, 0, 25, 2);
pixaDestroy(&pixa);
return pixd;
}
/*-------------------------------------------------------------*
* Color sample setting and extraction *
*-------------------------------------------------------------*/
/*!
* \brief pixCreateRGBImage()
*
* \param[in] pixr 8 bpp red pix
* \param[in] pixg 8 bpp green pix
* \param[in] pixb 8 bpp blue pix
* \return 32 bpp pix, interleaved with 4 samples/pixel,
* or NULL on error
*
* <pre>
* Notes:
* (1) the 4th byte, sometimes called the "alpha channel",
* and which is often used for blending between different
* images, is left with 0 value.
* (2) see Note (4) in pix.h for details on storage of
* 8-bit samples within each 32-bit word.
* (3) This implementation, setting the r, g and b components
* sequentially, is much faster than setting them in parallel
* by constructing an RGB dest pixel and writing it to dest.
* The reason is there are many more cache misses when reading
* from 3 input images simultaneously.
* </pre>
*/
PIX *
pixCreateRGBImage(PIX *pixr,
PIX *pixg,
PIX *pixb)
{
l_int32 wr, wg, wb, hr, hg, hb, dr, dg, db;
PIX *pixd;
PROCNAME("pixCreateRGBImage");
if (!pixr)
return (PIX *)ERROR_PTR("pixr not defined", procName, NULL);
if (!pixg)
return (PIX *)ERROR_PTR("pixg not defined", procName, NULL);
if (!pixb)
return (PIX *)ERROR_PTR("pixb not defined", procName, NULL);
pixGetDimensions(pixr, &wr, &hr, &dr);
pixGetDimensions(pixg, &wg, &hg, &dg);
pixGetDimensions(pixb, &wb, &hb, &db);
if (dr != 8 || dg != 8 || db != 8)
return (PIX *)ERROR_PTR("input pix not all 8 bpp", procName, NULL);
if (wr != wg || wr != wb)
return (PIX *)ERROR_PTR("widths not the same", procName, NULL);
if (hr != hg || hr != hb)
return (PIX *)ERROR_PTR("heights not the same", procName, NULL);
if ((pixd = pixCreate(wr, hr, 32)) == NULL)
return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
pixCopyResolution(pixd, pixr);
pixSetRGBComponent(pixd, pixr, COLOR_RED);
pixSetRGBComponent(pixd, pixg, COLOR_GREEN);
pixSetRGBComponent(pixd, pixb, COLOR_BLUE);
return pixd;
}
/*!
* \brief pixGetRGBComponent()
*
* \param[in] pixs 32 bpp, or colormapped
* \param[in] comp one of {COLOR_RED, COLOR_GREEN, COLOR_BLUE,
* L_ALPHA_CHANNEL}
* \return pixd the selected 8 bpp component image of the
* input 32 bpp image or NULL on error
*
* <pre>
* Notes:
* (1) Three calls to this function generate the r, g and b 8 bpp
* component images. This is much faster than generating the
* three images in parallel, by extracting a src pixel and setting
* the pixels of each component image from it. The reason is
* there are many more cache misses when writing to three
* output images simultaneously.
* </pre>
*/
PIX *
pixGetRGBComponent(PIX *pixs,
l_int32 comp)
{
l_int32 i, j, w, h, wpls, wpld, val;
l_uint32 *lines, *lined;
l_uint32 *datas, *datad;
PIX *pixd;
PROCNAME("pixGetRGBComponent");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
if (pixGetColormap(pixs))
return pixGetRGBComponentCmap(pixs, comp);
if (pixGetDepth(pixs) != 32)
return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
if (comp != COLOR_RED && comp != COLOR_GREEN &&
comp != COLOR_BLUE && comp != L_ALPHA_CHANNEL)
return (PIX *)ERROR_PTR("invalid comp", procName, NULL);
pixGetDimensions(pixs, &w, &h, NULL);
if ((pixd = pixCreate(w, h, 8)) == NULL)
return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
pixCopyResolution(pixd, pixs);
wpls = pixGetWpl(pixs);
wpld = pixGetWpl(pixd);
datas = pixGetData(pixs);
datad = pixGetData(pixd);
for (i = 0; i < h; i++) {
lines = datas + i * wpls;
lined = datad + i * wpld;
for (j = 0; j < w; j++) {
val = GET_DATA_BYTE(lines + j, comp);
SET_DATA_BYTE(lined, j, val);
}
}
return pixd;
}
/*!
* \brief pixSetRGBComponent()
*
* \param[in] pixd 32 bpp
* \param[in] pixs 8 bpp
* \param[in] comp one of the set: {COLOR_RED, COLOR_GREEN,
* COLOR_BLUE, L_ALPHA_CHANNEL}
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) This places the 8 bpp pixel in pixs into the
* specified component (properly interleaved) in pixd,
* (2) The two images are registered to the UL corner; the sizes
* need not be the same, but a warning is issued if they differ.
* </pre>
*/
l_ok
pixSetRGBComponent(PIX *pixd,
PIX *pixs,
l_int32 comp)
{
l_uint8 srcbyte;
l_int32 i, j, w, h, ws, hs, wd, hd;
l_int32 wpls, wpld;
l_uint32 *lines, *lined;
l_uint32 *datas, *datad;
PROCNAME("pixSetRGBComponent");
if (!pixd)
return ERROR_INT("pixd not defined", procName, 1);
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
if (pixGetDepth(pixd) != 32)
return ERROR_INT("pixd not 32 bpp", procName, 1);
if (pixGetDepth(pixs) != 8)
return ERROR_INT("pixs not 8 bpp", procName, 1);
if (comp != COLOR_RED && comp != COLOR_GREEN &&
comp != COLOR_BLUE && comp != L_ALPHA_CHANNEL)
return ERROR_INT("invalid comp", procName, 1);
pixGetDimensions(pixs, &ws, &hs, NULL);
pixGetDimensions(pixd, &wd, &hd, NULL);
if (ws != wd || hs != hd)
L_WARNING("images sizes not equal\n", procName);
w = L_MIN(ws, wd);
h = L_MIN(hs, hd);
if (comp == L_ALPHA_CHANNEL)
pixSetSpp(pixd, 4);
datas = pixGetData(pixs);
datad = pixGetData(pixd);
wpls = pixGetWpl(pixs);
wpld = pixGetWpl(pixd);
for (i = 0; i < h; i++) {
lines = datas + i * wpls;
lined = datad + i * wpld;
for (j = 0; j < w; j++) {
srcbyte = GET_DATA_BYTE(lines, j);
SET_DATA_BYTE(lined + j, comp, srcbyte);
}
}
return 0;
}
/*!
* \brief pixGetRGBComponentCmap()
*
* \param[in] pixs colormapped
* \param[in] comp one of the set: {COLOR_RED, COLOR_GREEN, COLOR_BLUE}
* \return pixd the selected 8 bpp component image of the
* input cmapped image, or NULL on error
*
* <pre>
* Notes:
* (1) In leptonica, we do not support alpha in colormaps.
* </pre>
*/
PIX *
pixGetRGBComponentCmap(PIX *pixs,
l_int32 comp)
{
l_int32 i, j, w, h, val, index;
l_int32 wplc, wpld;
l_uint32 *linec, *lined;
l_uint32 *datac, *datad;
PIX *pixc, *pixd;
PIXCMAP *cmap;
RGBA_QUAD *cta;
PROCNAME("pixGetRGBComponentCmap");
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
if ((cmap = pixGetColormap(pixs)) == NULL)
return (PIX *)ERROR_PTR("pixs not cmapped", procName, NULL);
if (comp == L_ALPHA_CHANNEL)
return (PIX *)ERROR_PTR("alpha in cmaps not supported", procName, NULL);
if (comp != COLOR_RED && comp != COLOR_GREEN && comp != COLOR_BLUE)
return (PIX *)ERROR_PTR("invalid comp", procName, NULL);
/* If not 8 bpp, make a cmapped 8 bpp pix */
if (pixGetDepth(pixs) == 8)
pixc = pixClone(pixs);
else
pixc = pixConvertTo8(pixs, TRUE);
pixGetDimensions(pixs, &w, &h, NULL);
if ((pixd = pixCreateNoInit(w, h, 8)) == NULL) {
pixDestroy(&pixc);
return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
}
pixCopyResolution(pixd, pixs);
wplc = pixGetWpl(pixc);
wpld = pixGetWpl(pixd);
datac = pixGetData(pixc);
datad = pixGetData(pixd);
cta = (RGBA_QUAD *)cmap->array;
for (i = 0; i < h; i++) {
linec = datac + i * wplc;
lined = datad + i * wpld;
if (comp == COLOR_RED) {
for (j = 0; j < w; j++) {
index = GET_DATA_BYTE(linec, j);
val = cta[index].red;
SET_DATA_BYTE(lined, j, val);
}
} else if (comp == COLOR_GREEN) {
for (j = 0; j < w; j++) {
index = GET_DATA_BYTE(linec, j);
val = cta[index].green;
SET_DATA_BYTE(lined, j, val);
}
} else if (comp == COLOR_BLUE) {
for (j = 0; j < w; j++) {
index = GET_DATA_BYTE(linec, j);
val = cta[index].blue;
SET_DATA_BYTE(lined, j, val);
}
}
}
pixDestroy(&pixc);
return pixd;
}
/*!
* \brief pixCopyRGBComponent()
*
* \param[in] pixd 32 bpp
* \param[in] pixs 32 bpp
* \param[in] comp one of the set: {COLOR_RED, COLOR_GREEN,
* COLOR_BLUE, L_ALPHA_CHANNEL}
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) The two images are registered to the UL corner. The sizes
* are usually the same, and a warning is issued if they differ.
* </pre>
*/
l_ok
pixCopyRGBComponent(PIX *pixd,
PIX *pixs,
l_int32 comp)
{
l_int32 i, j, w, h, ws, hs, wd, hd, val;
l_int32 wpls, wpld;
l_uint32 *lines, *lined;
l_uint32 *datas, *datad;
PROCNAME("pixCopyRGBComponent");
if (!pixd && pixGetDepth(pixd) != 32)
return ERROR_INT("pixd not defined or not 32 bpp", procName, 1);
if (!pixs && pixGetDepth(pixs) != 32)
return ERROR_INT("pixs not defined or not 32 bpp", procName, 1);
if (comp != COLOR_RED && comp != COLOR_GREEN &&
comp != COLOR_BLUE && comp != L_ALPHA_CHANNEL)
return ERROR_INT("invalid component", procName, 1);
pixGetDimensions(pixs, &ws, &hs, NULL);
pixGetDimensions(pixd, &wd, &hd, NULL);
if (ws != wd || hs != hd)
L_WARNING("images sizes not equal\n", procName);
w = L_MIN(ws, wd);
h = L_MIN(hs, hd);
if (comp == L_ALPHA_CHANNEL)
pixSetSpp(pixd, 4);
wpls = pixGetWpl(pixs);
wpld = pixGetWpl(pixd);
datas = pixGetData(pixs);
datad = pixGetData(pixd);
for (i = 0; i < h; i++) {
lines = datas + i * wpls;
lined = datad + i * wpld;
for (j = 0; j < w; j++) {
val = GET_DATA_BYTE(lines + j, comp);
SET_DATA_BYTE(lined + j, comp, val);
}
}
return 0;
}
/*!
* \brief composeRGBPixel()
*
* \param[in] rval, gval, bval
* \param[out] ppixel 32-bit pixel
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) All channels are 8 bits: the input values must be between
* 0 and 255. For speed, this is not enforced by masking
* with 0xff before shifting.
* (2) A slower implementation uses macros:
* SET_DATA_BYTE(ppixel, COLOR_RED, rval);
* SET_DATA_BYTE(ppixel, COLOR_GREEN, gval);
* SET_DATA_BYTE(ppixel, COLOR_BLUE, bval);
* </pre>
*/
l_ok
composeRGBPixel(l_int32 rval,
l_int32 gval,
l_int32 bval,
l_uint32 *ppixel)
{
PROCNAME("composeRGBPixel");
if (!ppixel)
return ERROR_INT("&pixel not defined", procName, 1);
*ppixel = ((l_uint32)rval << L_RED_SHIFT) |
((l_uint32)gval << L_GREEN_SHIFT) |
((l_uint32)bval << L_BLUE_SHIFT);
return 0;
}
/*!
* \brief composeRGBAPixel()
*
* \param[in] rval, gval, bval, aval
* \param[out] ppixel 32-bit pixel
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) All channels are 8 bits: the input values must be between
* 0 and 255. For speed, this is not enforced by masking
* with 0xff before shifting.
* </pre>
*/
l_ok
composeRGBAPixel(l_int32 rval,
l_int32 gval,
l_int32 bval,
l_int32 aval,
l_uint32 *ppixel)
{
PROCNAME("composeRGBAPixel");
if (!ppixel)
return ERROR_INT("&pixel not defined", procName, 1);
*ppixel = ((l_uint32)rval << L_RED_SHIFT) |
((l_uint32)gval << L_GREEN_SHIFT) |
((l_uint32)bval << L_BLUE_SHIFT) |
aval;
return 0;
}
/*!
* \brief extractRGBValues()
*
* \param[in] pixel 32 bit
* \param[out] prval [optional] red component
* \param[out] pgval [optional] green component
* \param[out] pbval [optional] blue component
* \return void
*
* <pre>
* Notes:
* (1) A slower implementation uses macros:
* *prval = GET_DATA_BYTE(&pixel, COLOR_RED);
* *pgval = GET_DATA_BYTE(&pixel, COLOR_GREEN);
* *pbval = GET_DATA_BYTE(&pixel, COLOR_BLUE);
* </pre>
*/
void
extractRGBValues(l_uint32 pixel,
l_int32 *prval,
l_int32 *pgval,
l_int32 *pbval)
{
if (prval) *prval = (pixel >> L_RED_SHIFT) & 0xff;
if (pgval) *pgval = (pixel >> L_GREEN_SHIFT) & 0xff;
if (pbval) *pbval = (pixel >> L_BLUE_SHIFT) & 0xff;
return;
}
/*!
* \brief extractRGBAValues()
*
* \param[in] pixel 32 bit
* \param[out] prval [optional] red component
* \param[out] pgval [optional] green component
* \param[out] pbval [optional] blue component
* \param[out] paval [optional] alpha component
* \return void
*/
void
extractRGBAValues(l_uint32 pixel,
l_int32 *prval,
l_int32 *pgval,
l_int32 *pbval,
l_int32 *paval)
{
if (prval) *prval = (pixel >> L_RED_SHIFT) & 0xff;
if (pgval) *pgval = (pixel >> L_GREEN_SHIFT) & 0xff;
if (pbval) *pbval = (pixel >> L_BLUE_SHIFT) & 0xff;
if (paval) *paval = (pixel >> L_ALPHA_SHIFT) & 0xff;
return;
}
/*!
* \brief extractMinMaxComponent()
*
* \param[in] pixel 32 bpp RGB
* \param[in] type L_CHOOSE_MIN or L_CHOOSE_MAX
* \return component in range [0 ... 255], or NULL on error
*/
l_int32
extractMinMaxComponent(l_uint32 pixel,
l_int32 type)
{
l_int32 rval, gval, bval, val;
extractRGBValues(pixel, &rval, &gval, &bval);
if (type == L_CHOOSE_MIN) {
val = L_MIN(rval, gval);
val = L_MIN(val, bval);
} else { /* type == L_CHOOSE_MAX */
val = L_MAX(rval, gval);
val = L_MAX(val, bval);
}
return val;
}
/*!
* \brief pixGetRGBLine()
*
* \param[in] pixs 32 bpp
* \param[in] row
* \param[in] bufr array of red samples; size w bytes
* \param[in] bufg array of green samples; size w bytes
* \param[in] bufb array of blue samples; size w bytes
* \return 0 if OK; 1 on error
*
* <pre>
* Notes:
* (1) This puts rgb components from the input line in pixs
* into the given buffers.
* </pre>
*/
l_ok
pixGetRGBLine(PIX *pixs,
l_int32 row,
l_uint8 *bufr,
l_uint8 *bufg,
l_uint8 *bufb)
{
l_uint32 *lines;
l_int32 j, w, h;
l_int32 wpls;
PROCNAME("pixGetRGBLine");
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
if (pixGetDepth(pixs) != 32)
return ERROR_INT("pixs not 32 bpp", procName, 1);
if (!bufr || !bufg || !bufb)
return ERROR_INT("buffer not defined", procName, 1);
pixGetDimensions(pixs, &w, &h, NULL);
if (row < 0 || row >= h)
return ERROR_INT("row out of bounds", procName, 1);
wpls = pixGetWpl(pixs);
lines = pixGetData(pixs) + row * wpls;
for (j = 0; j < w; j++) {
bufr[j] = GET_DATA_BYTE(lines + j, COLOR_RED);
bufg[j] = GET_DATA_BYTE(lines + j, COLOR_GREEN);
bufb[j] = GET_DATA_BYTE(lines + j, COLOR_BLUE);
}
return 0;
}
/*-------------------------------------------------------------*
* Pixel endian conversion *
*-------------------------------------------------------------*/
/*!
* \brief pixEndianByteSwapNew()
*
* \param[in] pixs
* \return pixd, or NULL on error
*
* <pre>
* Notes:
* (1) This is used to convert the data in a pix to a
* serialized byte buffer in raster order, and, for RGB,
* in order RGBA. This requires flipping bytes within
* each 32-bit word for little-endian platforms, because the
* words have a MSB-to-the-left rule, whereas byte raster-order
* requires the left-most byte in each word to be byte 0.
* For big-endians, no swap is necessary, so this returns a clone.
* (2) Unlike pixEndianByteSwap(), which swaps the bytes in-place,
* this returns a new pix (or a clone). We provide this
* because often when serialization is done, the source
* pix needs to be restored to canonical little-endian order,
* and this requires a second byte swap. In such a situation,
* it is twice as fast to make a new pix in big-endian order,
* use it, and destroy it.
* </pre>
*/
PIX *
pixEndianByteSwapNew(PIX *pixs)
{
l_uint32 *datas, *datad;
l_int32 i, j, h, wpl;
l_uint32 word;
PIX *pixd;
PROCNAME("pixEndianByteSwapNew");
#ifdef L_BIG_ENDIAN
return pixClone(pixs);
#else /* L_LITTLE_ENDIAN */
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
datas = pixGetData(pixs);
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
pixd = pixCreateTemplate(pixs);
datad = pixGetData(pixd);
for (i = 0; i < h; i++) {
for (j = 0; j < wpl; j++, datas++, datad++) {
word = *datas;
*datad = (word >> 24) |
((word >> 8) & 0x0000ff00) |
((word << 8) & 0x00ff0000) |
(word << 24);
}
}
return pixd;
#endif /* L_BIG_ENDIAN */
}
/*!
* \brief pixEndianByteSwap()
*
* \param[in] pixs
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) This is used on little-endian platforms to swap
* the bytes within a word; bytes 0 and 3 are swapped,
* and bytes 1 and 2 are swapped.
* (2) This is required for little-endians in situations
* where we convert from a serialized byte order that is
* in raster order, as one typically has in file formats,
* to one with MSB-to-the-left in each 32-bit word, or v.v.
* See pix.h for a description of the canonical format
* (MSB-to-the left) that is used for both little-endian
* and big-endian platforms. For big-endians, the
* MSB-to-the-left word order has the bytes in raster
* order when serialized, so no byte flipping is required.
* </pre>
*/
l_ok
pixEndianByteSwap(PIX *pixs)
{
l_uint32 *data;
l_int32 i, j, h, wpl;
l_uint32 word;
PROCNAME("pixEndianByteSwap");
#ifdef L_BIG_ENDIAN
return 0;
#else /* L_LITTLE_ENDIAN */
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
data = pixGetData(pixs);
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
for (i = 0; i < h; i++) {
for (j = 0; j < wpl; j++, data++) {
word = *data;
*data = (word >> 24) |
((word >> 8) & 0x0000ff00) |
((word << 8) & 0x00ff0000) |
(word << 24);
}
}
return 0;
#endif /* L_BIG_ENDIAN */
}
/*!
* \brief lineEndianByteSwap()
*
* \param[in] datad dest byte array data, reordered on little-endians
* \param[in] datas a src line of pix data)
* \param[in] wpl number of 32 bit words in the line
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) This is used on little-endian platforms to swap
* the bytes within each word in the line of image data.
* Bytes 0 <==> 3 and 1 <==> 2 are swapped in the dest
* byte array data8d, relative to the pix data in datas.
* (2) The bytes represent 8 bit pixel values. They are swapped
* for little endians so that when the dest array datad
* is addressed by bytes, the pixels are chosen sequentially
* from left to right in the image.
* </pre>
*/
l_int32
lineEndianByteSwap(l_uint32 *datad,
l_uint32 *datas,
l_int32 wpl)
{
l_int32 j;
l_uint32 word;
PROCNAME("lineEndianByteSwap");
if (!datad || !datas)
return ERROR_INT("datad and datas not both defined", procName, 1);
#ifdef L_BIG_ENDIAN
memcpy(datad, datas, 4 * wpl);
return 0;
#else /* L_LITTLE_ENDIAN */
for (j = 0; j < wpl; j++, datas++, datad++) {
word = *datas;
*datad = (word >> 24) |
((word >> 8) & 0x0000ff00) |
((word << 8) & 0x00ff0000) |
(word << 24);
}
return 0;
#endif /* L_BIG_ENDIAN */
}
/*!
* \brief pixEndianTwoByteSwapNew()
*
* \param[in] pixs
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) This is used on little-endian platforms to swap the
* 2-byte entities within a 32-bit word.
* (2) This is equivalent to a full byte swap, as performed
* by pixEndianByteSwap(), followed by byte swaps in
* each of the 16-bit entities separately.
* (3) Unlike pixEndianTwoByteSwap(), which swaps the shorts in-place,
* this returns a new pix (or a clone). We provide this
* to avoid having to swap twice in situations where the input
* pix must be restored to canonical little-endian order.
* </pre>
*/
PIX *
pixEndianTwoByteSwapNew(PIX *pixs)
{
l_uint32 *datas, *datad;
l_int32 i, j, h, wpl;
l_uint32 word;
PIX *pixd;
PROCNAME("pixEndianTwoByteSwapNew");
#ifdef L_BIG_ENDIAN
return pixClone(pixs);
#else /* L_LITTLE_ENDIAN */
if (!pixs)
return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
datas = pixGetData(pixs);
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
pixd = pixCreateTemplate(pixs);
datad = pixGetData(pixd);
for (i = 0; i < h; i++) {
for (j = 0; j < wpl; j++, datas++, datad++) {
word = *datas;
*datad = (word << 16) | (word >> 16);
}
}
return pixd;
#endif /* L_BIG_ENDIAN */
}
/*!
* \brief pixEndianTwoByteSwap()
*
* \param[in] pixs
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) This is used on little-endian platforms to swap the
* 2-byte entities within a 32-bit word.
* (2) This is equivalent to a full byte swap, as performed
* by pixEndianByteSwap(), followed by byte swaps in
* each of the 16-bit entities separately.
* </pre>
*/
l_ok
pixEndianTwoByteSwap(PIX *pixs)
{
l_uint32 *data;
l_int32 i, j, h, wpl;
l_uint32 word;
PROCNAME("pixEndianTwoByteSwap");
#ifdef L_BIG_ENDIAN
return 0;
#else /* L_LITTLE_ENDIAN */
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
data = pixGetData(pixs);
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
for (i = 0; i < h; i++) {
for (j = 0; j < wpl; j++, data++) {
word = *data;
*data = (word << 16) | (word >> 16);
}
}
return 0;
#endif /* L_BIG_ENDIAN */
}
/*-------------------------------------------------------------*
* Extract raster data as binary string *
*-------------------------------------------------------------*/
/*!
* \brief pixGetRasterData()
*
* \param[in] pixs 1, 8, 32 bpp
* \param[out] pdata raster data in memory
* \param[out] pnbytes number of bytes in data string
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) This returns the raster data as a byte string, padded to the
* byte. For 1 bpp, the first pixel is the MSbit in the first byte.
* For rgb, the bytes are in (rgb) order. This is the format
* required for flate encoding of pixels in a PostScript file.
* </pre>
*/
l_ok
pixGetRasterData(PIX *pixs,
l_uint8 **pdata,
size_t *pnbytes)
{
l_int32 w, h, d, wpl, i, j, rval, gval, bval;
l_int32 databpl; /* bytes for each raster line in returned data */
l_uint8 *line, *data; /* packed data in returned array */
l_uint32 *rline, *rdata; /* data in pix raster */
PROCNAME("pixGetRasterData");
if (pdata) *pdata = NULL;
if (pnbytes) *pnbytes = 0;
if (!pdata || !pnbytes)
return ERROR_INT("&data and &nbytes not both defined", procName, 1);
if (!pixs)
return ERROR_INT("pixs not defined", procName, 1);
pixGetDimensions(pixs, &w, &h, &d);
if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 32)
return ERROR_INT("depth not in {1,2,4,8,16,32}", procName, 1);
rdata = pixGetData(pixs);
wpl = pixGetWpl(pixs);
if (d == 1)
databpl = (w + 7) / 8;
else if (d == 2)
databpl = (w + 3) / 4;
else if (d == 4)
databpl = (w + 1) / 2;
else if (d == 8 || d == 16)
databpl = w * (d / 8);
else /* d == 32 bpp rgb */
databpl = 3 * w;
if ((data = (l_uint8 *)LEPT_CALLOC((size_t)databpl * h, sizeof(l_uint8)))
== NULL)
return ERROR_INT("data not allocated", procName, 1);
*pdata = data;
*pnbytes = (size_t)databpl * h;
for (i = 0; i < h; i++) {
rline = rdata + i * wpl;
line = data + i * databpl;
if (d <= 8) {
for (j = 0; j < databpl; j++)
line[j] = GET_DATA_BYTE(rline, j);
} else if (d == 16) {
for (j = 0; j < w; j++)
line[2 * j] = GET_DATA_TWO_BYTES(rline, j);
} else { /* d == 32 bpp rgb */
for (j = 0; j < w; j++) {
extractRGBValues(rline[j], &rval, &gval, &bval);
*(line + 3 * j) = rval;
*(line + 3 * j + 1) = gval;
*(line + 3 * j + 2) = bval;
}
}
}
return 0;
}
/*-------------------------------------------------------------*
* Test alpha component opaqueness *
*-------------------------------------------------------------*/
/*!
* \brief pixAlphaIsOpaque()
*
* \param[in] pix 32 bpp, spp == 4
* \param[out] popaque 1 if spp == 4 and all alpha component
* values are 255 (opaque); 0 otherwise
* \return 0 if OK, 1 on error
* Notes:
* 1) On error, opaque is returned as 0 (FALSE).
*/
l_ok
pixAlphaIsOpaque(PIX *pix,
l_int32 *popaque)
{
l_int32 w, h, wpl, i, j, alpha;
l_uint32 *data, *line;
PROCNAME("pixAlphaIsOpaque");
if (!popaque)
return ERROR_INT("&opaque not defined", procName, 1);
*popaque = FALSE;
if (!pix)
return ERROR_INT("&pix not defined", procName, 1);
if (pixGetDepth(pix) != 32)
return ERROR_INT("&pix not 32 bpp", procName, 1);
if (pixGetSpp(pix) != 4)
return ERROR_INT("&pix not 4 spp", procName, 1);
data = pixGetData(pix);
wpl = pixGetWpl(pix);
pixGetDimensions(pix, &w, &h, NULL);
for (i = 0; i < h; i++) {
line = data + i * wpl;
for (j = 0; j < w; j++) {
alpha = GET_DATA_BYTE(line + j, L_ALPHA_CHANNEL);
if (alpha ^ 0xff) /* not opaque */
return 0;
}
}
*popaque = TRUE;
return 0;
}
/*-------------------------------------------------------------*
* Setup helpers for 8 bpp byte processing *
*-------------------------------------------------------------*/
/*!
* \brief pixSetupByteProcessing()
*
* \param[in] pix 8 bpp, no colormap
* \param[out] pw [optional] width
* \param[out] ph [optional] height
* \return line ptr array, or NULL on error
*
* <pre>
* Notes:
* (1) This is a simple helper for processing 8 bpp images with
* direct byte access. It can swap byte order within each word.
* (2) After processing, you must call pixCleanupByteProcessing(),
* which frees the lineptr array and restores byte order.
* (3) Usage:
* l_uint8 **lineptrs = pixSetupByteProcessing(pix, &w, &h);
* for (i = 0; i < h; i++) {
* l_uint8 *line = lineptrs[i];
* for (j = 0; j < w; j++) {
* val = line[j];
* ...
* }
* }
* pixCleanupByteProcessing(pix, lineptrs);
* </pre>
*/
l_uint8 **
pixSetupByteProcessing(PIX *pix,
l_int32 *pw,
l_int32 *ph)
{
l_int32 w, h;
PROCNAME("pixSetupByteProcessing");
if (pw) *pw = 0;
if (ph) *ph = 0;
if (!pix || pixGetDepth(pix) != 8)
return (l_uint8 **)ERROR_PTR("pix not defined or not 8 bpp",
procName, NULL);
pixGetDimensions(pix, &w, &h, NULL);
if (pw) *pw = w;
if (ph) *ph = h;
if (pixGetColormap(pix))
return (l_uint8 **)ERROR_PTR("pix has colormap", procName, NULL);
pixEndianByteSwap(pix);
return (l_uint8 **)pixGetLinePtrs(pix, NULL);
}
/*!
* \brief pixCleanupByteProcessing()
*
* \param[in] pix 8 bpp, no colormap
* \param[in] lineptrs ptrs to the beginning of each raster line of data
* \return 0 if OK, 1 on error
*
* <pre>
* Notes:
* (1) This must be called after processing that was initiated
* by pixSetupByteProcessing() has finished.
* </pre>
*/
l_ok
pixCleanupByteProcessing(PIX *pix,
l_uint8 **lineptrs)
{
PROCNAME("pixCleanupByteProcessing");
if (!pix)
return ERROR_INT("pix not defined", procName, 1);
if (!lineptrs)
return ERROR_INT("lineptrs not defined", procName, 1);
pixEndianByteSwap(pix);
LEPT_FREE(lineptrs);
return 0;
}
/*------------------------------------------------------------------------*
* Setting parameters for antialias masking with alpha transforms *
*------------------------------------------------------------------------*/
/*!
* \brief l_setAlphaMaskBorder()
*
* \param[in] val1, val2 in [0.0 ... 1.0]
* \return void
*
* <pre>
* Notes:
* (1) This sets the opacity values used to generate the two outer
* boundary rings in the alpha mask associated with geometric
* transforms such as pixRotateWithAlpha().
* (2) The default values are val1 = 0.0 (completely transparent
* in the outermost ring) and val2 = 0.5 (half transparent
* in the second ring). When the image is blended, this
* completely removes the outer ring (shrinking the image by
* 2 in each direction), and alpha-blends with 0.5 the second ring.
* Using val1 = 0.25 and val2 = 0.75 gives a slightly more
* blurred border, with no perceptual difference at screen resolution.
* (3) The actual mask values are found by multiplying these
* normalized opacity values by 255.
* </pre>
*/
void
l_setAlphaMaskBorder(l_float32 val1,
l_float32 val2)
{
val1 = L_MAX(0.0, L_MIN(1.0, val1));
val2 = L_MAX(0.0, L_MIN(1.0, val2));
AlphaMaskBorderVals[0] = val1;
AlphaMaskBorderVals[1] = val2;
}