twain3.0/huagao/ImageProcess/ImageApplyAutoCrop.cpp

225 lines
6.1 KiB
C++

#include "ImageApplyAutoCrop.h"
#include "ImageProcess_Public.h"
CImageApplyAutoCrop::CImageApplyAutoCrop()
: m_isCrop(false)
, m_isDesaskew(false)
, m_isFillBlank(false)
, m_isConvexHull(true)
, m_isFillColor(false)
, m_threshold(40)
, m_noise(8)
, m_indent(5)
{
}
CImageApplyAutoCrop::CImageApplyAutoCrop(bool isCrop, bool isDesaskew, bool isFillBlank, const cv::Size& fixedSize, bool isConvex, bool isFillColor, double threshold, int noise, int indent)
: m_isCrop(isCrop)
, m_isDesaskew(isDesaskew)
, m_isFillBlank(isFillBlank)
, m_isConvexHull(isConvex)
, m_isFillColor(isFillColor)
, m_threshold(threshold)
, m_noise(noise)
, m_indent(indent)
, m_fixedSize(fixedSize)
{
}
CImageApplyAutoCrop::~CImageApplyAutoCrop()
{
}
void CImageApplyAutoCrop::apply(cv::Mat& pDib, int side)
{
(void)side;
if (pDib.empty()) return;
if (!m_isCrop && !m_isDesaskew && !m_isFillBlank && m_fixedSize.empty()) return;
cv::Mat src = pDib;
cv::Mat thre;
cv::Mat dst;
hg::threshold_Mat(src, thre, m_threshold);
if (m_noise > 0)
{
cv::Mat element = getStructuringElement(cv::MORPH_RECT, cv::Size(m_noise, m_noise));
cv::morphologyEx(thre, thre, cv::MORPH_OPEN, element);
}
std::vector<cv::Vec4i> hierarchy;
std::vector<std::vector<cv::Point>> contours;
hg::findContours(thre, contours, hierarchy, cv::RETR_EXTERNAL);
m_maxContour = hg::getMaxContour(contours, hierarchy);
if (m_maxContour.size() == 0)
{
return;
}
thre.release();
cv::RotatedRect rect = hg::getBoundingRect(m_maxContour);
cv::Rect boudingRect = cv::boundingRect(m_maxContour);
boudingRect.x -= 1;
boudingRect.y -= 1;
boudingRect.width += 2;
boudingRect.height += 2;
if (m_isDesaskew && rect.angle != 0)
{
cv::Point2f srcTri[4];
cv::Point2f dstTri[3];
rect.points(srcTri);
dstTri[0] = cv::Point2f(0, rect.size.height - 1);
dstTri[1] = cv::Point2f(0, 0);
dstTri[2] = cv::Point2f(rect.size.width - 1, 0);
cv::Mat warp_mat;
warp_mat = cv::getAffineTransform(srcTri, dstTri);
//cv::warpAffine(src, dst, warp_mat, rect.size,cv::INTER_LANCZOS4);
cv::warpAffine(src, dst, warp_mat, rect.size);
}
else
dst = src(boudingRect & cv::Rect(0, 0, src.cols, src.rows));
m_maxContour.clear();
m_maxContour.push_back(cv::Point(-1, dst.rows));
m_maxContour.push_back(cv::Point(-1, -1));
m_maxContour.push_back(cv::Point(dst.cols, -1));
m_maxContour.push_back(cv::Point(dst.cols, dst.rows));
if (m_isFillBlank)
{
cv::Mat thre_dst;
hg::threshold_Mat(dst, thre_dst, m_threshold);
if (m_indent > 0)
{
std::vector<cv::Point> rectEdge{ cv::Point(0, 0) ,cv::Point(thre_dst.cols - 1, 0),
cv::Point(thre_dst.cols - 1, thre_dst.rows - 1), cv::Point(0, thre_dst.rows - 1) };
std::vector<std::vector<cv::Point>> rectEdges{ rectEdge };
cv::drawContours(thre_dst, rectEdges, 0, cv::Scalar::all(0));
cv::Mat element = cv::getStructuringElement(cv::MorphShapes::MORPH_RECT, cv::Size(m_indent, m_indent));
cv::erode(thre_dst, thre_dst, element, cv::Point(-1, -1), 1);
}
hierarchy.clear();
contours.clear();
m_maxContour.clear();
hg::findContours(thre_dst, contours, hierarchy, cv::RETR_EXTERNAL);
if (m_isConvexHull)
{
m_maxContour = hg::getMaxContour(contours, hierarchy);
hg::convexHull(m_maxContour, m_maxContour);
contours.clear();
contours.push_back(m_maxContour);
}
contours.push_back(std::vector<cv::Point>());
contours[contours.size() - 1].push_back(cv::Point(-1, dst.rows - 1));
contours[contours.size() - 1].push_back(cv::Point(-1, -1));
contours[contours.size() - 1].push_back(cv::Point(dst.cols, -1));
contours[contours.size() - 1].push_back(cv::Point(dst.cols, dst.rows));
hg::fillPolys(dst, contours, m_isFillColor ? getBackGroudColor(pDib, rect.size.area()) : cv::Scalar(255, 255, 255));
}
pDib.release();
if (/*(m_isCrop && side == 0) || (side == 1 && m_fixedSize.width * m_fixedSize.height == 0)*/ m_isCrop)
pDib = dst.clone();
else
{
pDib = cv::Mat(m_fixedSize, dst.type(), m_isFillBlank ? cv::Scalar(255, 255, 255) : cv::Scalar(0, 0, 0));
cv::Rect roi;
roi.x = dst.cols > pDib.cols ? (dst.cols - pDib.cols) / 2 : 0;
roi.width = cv::min(pDib.cols, dst.cols);
roi.y = dst.rows > pDib.rows ? (dst.rows - pDib.rows) / 2 : 0;
roi.height = cv::min(pDib.rows, dst.rows);
cv::Rect rect((pDib.cols - roi.width) / 2, (pDib.rows - roi.height) / 2, roi.width, roi.height);
for (cv::Point& p : m_maxContour)
p += roi.tl();
dst(roi).copyTo(pDib(rect));
}
#ifdef LOG
FileTools::write_log("imgprc.txt", "exit CImageApplyAutoCrop apply8");
#endif // LOG
}
void CImageApplyAutoCrop::apply(std::vector<cv::Mat>& mats, bool isTwoSide)
{
if (mats.empty()) return;
if (!mats[0].empty()) {
apply(mats[0], 0);
}
if (isTwoSide && mats.size() > 1)
{
cv::Size dSize = m_fixedSize;
if (!mats[0].empty())
m_fixedSize = mats[0].size();
if (!mats[1].empty()) {
apply(mats[1], 1);
}
if (!mats[0].empty())
m_fixedSize = dSize;
}
}
cv::Scalar CImageApplyAutoCrop::getBackGroudColor(const cv::Mat& image, int total)
{
if (image.channels() == 3)
{
cv::Mat image_bgr[3];
cv::split(image, image_bgr);
uchar bgr[3];
for (size_t i = 0; i < 3; i++)
bgr[i] = getBackGroudChannelMean(image_bgr[i], total);
return cv::Scalar(bgr[0], bgr[1], bgr[2]);
}
else
return cv::Scalar::all(getBackGroudChannelMean(image, total));
}
uchar CImageApplyAutoCrop::getBackGroudChannelMean(const cv::Mat& gray, int total)
{
cv::Mat image_clone;
cv::resize(gray, image_clone, cv::Size(), 0.25, 0.25);
int threnshold = total / 32;
int channels[] = { 0 };
int nHistSize[] = { 256 };
float range[] = { 0, 256 };
const float* fHistRanges[] = { range };
cv::Mat hist;
cv::calcHist(&image_clone, 1, channels, cv::Mat(), hist, 1, nHistSize, fHistRanges, true, false);
int hist_array[256];
for (int i = 0; i < 256; i++)
hist_array[i] = hist.at<float>(i, 0);
int length = 1;
const int length_max = 255 - m_threshold;
while (length < length_max)
{
for (size_t i = m_threshold + 1; i < 256 - length; i++)
{
int count = 0;
uint pixSum = 0;
for (size_t j = 0; j < length; j++)
{
count += hist_array[j + i];
pixSum += hist_array[j + i] * (i + j);
}
if (count >= threnshold)
return pixSum / count;
}
length++;
}
return 255;
}