twain3.0/3rdparty/hgOCR/leptonica/arrayaccess.h

271 lines
11 KiB
C

/*====================================================================*
- Copyright (C) 2001 Leptonica. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the following
- disclaimer in the documentation and/or other materials
- provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*====================================================================*/
#ifndef LEPTONICA_ARRAY_ACCESS_H
#define LEPTONICA_ARRAY_ACCESS_H
/*!
* \file arrayaccess.h
*
* <pre>
* 1, 2, 4, 8, 16 and 32 bit data access within an array of 32-bit words
*
* This is used primarily to access 1, 2, 4, 8, 16 and 32 bit pixels
* in a line of image data, represented as an array of 32-bit words.
*
* pdata: pointer to first 32-bit word in the array
* n: index of the pixel in the array
*
* Function calls for these accessors are defined in arrayaccess.c.
*
* However, for efficiency we use the inline macros for all accesses.
* Even though the 2 and 4 bit set* accessors are more complicated,
* they are about 10% faster than the function calls.
*
* The 32 bit access is just a cast and ptr arithmetic. We include
* it so that the input ptr can be void*.
*
* At the end of this file is code for invoking the function calls
* instead of inlining.
*
* The macro SET_DATA_BIT_VAL(pdata, n, val) is a bit slower than
* if (val == 0)
* CLEAR_DATA_BIT(pdata, n);
* else
* SET_DATA_BIT(pdata, n);
*
* Some compilers complain when the SET macros are surrounded by
* parentheses, because parens require an evaluation and it is not
* defined for SET macros. If SET_DATA_QBIT were defined as a
* compound macro, in analogy to l_setDataQbit(), it requires
* surrounding braces:
* \code
* #define SET_DATA_QBIT(pdata, n, val) \
* {l_uint32 *_TEMP_WORD_PTR_; \
* _TEMP_WORD_PTR_ = (l_uint32 *)(pdata) + ((n) >> 3); \
* *_TEMP_WORD_PTR_ &= ~(0xf0000000 >> (4 * ((n) & 7))); \
* *_TEMP_WORD_PTR_ |= (((val) & 15) << (28 - 4 * ((n) & 7)));}
* \endcode
* but if used in an if/else
* \code
* if (x)
* SET_DATA_QBIT(...);
* else
* ...
* \endcode
* the compiler sees
* \code
* if (x)
* {......};
* else
* ...
* \endcode
* The semicolon comes after the brace and will not compile.
* This can be fixed in the call by either omitting the semicolon
* or requiring another set of braces around SET_DATA_QBIT(), but
* both these options break compatibility with current code, and
* require special attention by anyone using the macros.
*
* There are (at least) two ways to fix this in the macro definitions,
* suggested by Dave Bryan.
* (1) Surround the braces in the macro above with
* do {....} while(0)
* Then the semicolon just terminates the expression.
* (2) Reduce the blocks to a single expression; e.g,
* *((l_uint32 *)(pdata) + ((n) >> 3)) = \
* *((l_uint32 *)(pdata) + ((n) >> 3)) \
* & ~(0xf0000000 >> (4 * ((n) & 7))) \
* | (((val) & 15) << (28 - 4 * ((n) & 7)))
* This appears to cause redundant computation, but the compiler
* should evaluate the common subexpression only once.
* All these methods have the same performance, giving about 300M
* SET_DATA_QBIT operations per second on a fast 64 bit system.
* Using the function calls instead of the macros results in about 250M
* SET_DATA_QBIT operations per second, a performance hit of nearly 20%.
* </pre>
*/
#define USE_INLINE_ACCESSORS 1
#if USE_INLINE_ACCESSORS
/*=============================================================*/
/* Faster: use in line accessors */
/*=============================================================*/
/*--------------------------------------------------*
* 1 bit access *
*--------------------------------------------------*/
/*! 1 bit access - get */
#define GET_DATA_BIT(pdata, n) \
((*((const l_uint32 *)(pdata) + ((n) >> 5)) >> (31 - ((n) & 31))) & 1)
/*! 1 bit access - set */
#define SET_DATA_BIT(pdata, n) \
*((l_uint32 *)(pdata) + ((n) >> 5)) |= (0x80000000 >> ((n) & 31))
/*! 1 bit access - clear */
#define CLEAR_DATA_BIT(pdata, n) \
*((l_uint32 *)(pdata) + ((n) >> 5)) &= ~(0x80000000 >> ((n) & 31))
/*! 1 bit access - set value (0 or 1) */
#define SET_DATA_BIT_VAL(pdata, n, val) \
*((l_uint32 *)(pdata) + ((n) >> 5)) = \
((*((l_uint32 *)(pdata) + ((n) >> 5)) \
& (~(0x80000000 >> ((n) & 31)))) \
| ((l_uint32)(val) << (31 - ((n) & 31))))
/*--------------------------------------------------*
* 2 bit access *
*--------------------------------------------------*/
/*! 2 bit access - get */
#define GET_DATA_DIBIT(pdata, n) \
((*((const l_uint32 *)(pdata) + ((n) >> 4)) >> (2 * (15 - ((n) & 15)))) & 3)
/*! 2 bit access - set value (0 ... 3) */
#define SET_DATA_DIBIT(pdata, n, val) \
*((l_uint32 *)(pdata) + ((n) >> 4)) = \
((*((l_uint32 *)(pdata) + ((n) >> 4)) \
& (~(0xc0000000 >> (2 * ((n) & 15))))) \
| ((l_uint32)((val) & 3) << (30 - 2 * ((n) & 15))))
/*! 2 bit access - clear */
#define CLEAR_DATA_DIBIT(pdata, n) \
*((l_uint32 *)(pdata) + ((n) >> 4)) &= ~(0xc0000000 >> (2 * ((n) & 15)))
/*--------------------------------------------------*
* 4 bit access *
*--------------------------------------------------*/
/*! 4 bit access - get */
#define GET_DATA_QBIT(pdata, n) \
((*((const l_uint32 *)(pdata) + ((n) >> 3)) >> (4 * (7 - ((n) & 7)))) & 0xf)
/*! 4 bit access - set value (0 ... 15) */
#define SET_DATA_QBIT(pdata, n, val) \
*((l_uint32 *)(pdata) + ((n) >> 3)) = \
((*((l_uint32 *)(pdata) + ((n) >> 3)) \
& (~(0xf0000000 >> (4 * ((n) & 7))))) \
| ((l_uint32)((val) & 15) << (28 - 4 * ((n) & 7))))
/*! 4 bit access - clear */
#define CLEAR_DATA_QBIT(pdata, n) \
*((l_uint32 *)(pdata) + ((n) >> 3)) &= ~(0xf0000000 >> (4 * ((n) & 7)))
/*--------------------------------------------------*
* 8 bit access *
*--------------------------------------------------*/
#ifdef L_BIG_ENDIAN
/*! 8 bit access - get */
#define GET_DATA_BYTE(pdata, n) \
(*((const l_uint8 *)(pdata) + (n)))
#else /* L_LITTLE_ENDIAN */
/*! 8 bit access - get */
#define GET_DATA_BYTE(pdata, n) \
(*(l_uint8 *)((l_uintptr_t)((const l_uint8 *)(pdata) + (n)) ^ 3))
#endif /* L_BIG_ENDIAN */
#ifdef L_BIG_ENDIAN
/*! 8 bit access - set value (0 ... 255) */
#define SET_DATA_BYTE(pdata, n, val) \
*((l_uint8 *)(pdata) + (n)) = (val)
#else /* L_LITTLE_ENDIAN */
/*! 8 bit access - set value (0 ... 255) */
#define SET_DATA_BYTE(pdata, n, val) \
*(l_uint8 *)((l_uintptr_t)((l_uint8 *)(pdata) + (n)) ^ 3) = (val)
#endif /* L_BIG_ENDIAN */
/*--------------------------------------------------*
* 16 bit access *
*--------------------------------------------------*/
#ifdef L_BIG_ENDIAN
/*! 16 bit access - get */
#define GET_DATA_TWO_BYTES(pdata, n) \
(*((const l_uint16 *)(pdata) + (n)))
#else /* L_LITTLE_ENDIAN */
/*! 16 bit access - get */
#define GET_DATA_TWO_BYTES(pdata, n) \
(*(l_uint16 *)((l_uintptr_t)((const l_uint16 *)(pdata) + (n)) ^ 2))
#endif /* L_BIG_ENDIAN */
#ifdef L_BIG_ENDIAN
/*! 16 bit access - set value (0 ... 65535) */
#define SET_DATA_TWO_BYTES(pdata, n, val) \
*((l_uint16 *)(pdata) + (n)) = (val)
#else /* L_LITTLE_ENDIAN */
/*! 16 bit access - set value (0 ... 65535) */
#define SET_DATA_TWO_BYTES(pdata, n, val) \
*(l_uint16 *)((l_uintptr_t)((l_uint16 *)(pdata) + (n)) ^ 2) = (val)
#endif /* L_BIG_ENDIAN */
/*--------------------------------------------------*
* 32 bit access *
*--------------------------------------------------*/
/*! 32 bit access - get */
#define GET_DATA_FOUR_BYTES(pdata, n) \
(*((const l_uint32 *)(pdata) + (n)))
/*! 32 bit access - set (0 ... 4294967295) */
#define SET_DATA_FOUR_BYTES(pdata, n, val) \
*((l_uint32 *)(pdata) + (n)) = (val)
#else
/*=============================================================*/
/* Slower: use function calls for all accessors */
/*=============================================================*/
#define GET_DATA_BIT(pdata, n) l_getDataBit(pdata, n)
#define SET_DATA_BIT(pdata, n) l_setDataBit(pdata, n)
#define CLEAR_DATA_BIT(pdata, n) l_clearDataBit(pdata, n)
#define SET_DATA_BIT_VAL(pdata, n, val) l_setDataBitVal(pdata, n, val)
#define GET_DATA_DIBIT(pdata, n) l_getDataDibit(pdata, n)
#define SET_DATA_DIBIT(pdata, n, val) l_setDataDibit(pdata, n, val)
#define CLEAR_DATA_DIBIT(pdata, n) l_clearDataDibit(pdata, n)
#define GET_DATA_QBIT(pdata, n) l_getDataQbit(pdata, n)
#define SET_DATA_QBIT(pdata, n, val) l_setDataQbit(pdata, n, val)
#define CLEAR_DATA_QBIT(pdata, n) l_clearDataQbit(pdata, n)
#define GET_DATA_BYTE(pdata, n) l_getDataByte(pdata, n)
#define SET_DATA_BYTE(pdata, n, val) l_setDataByte(pdata, n, val)
#define GET_DATA_TWO_BYTES(pdata, n) l_getDataTwoBytes(pdata, n)
#define SET_DATA_TWO_BYTES(pdata, n, val) l_setDataTwoBytes(pdata, n, val)
#define GET_DATA_FOUR_BYTES(pdata, n) l_getDataFourBytes(pdata, n)
#define SET_DATA_FOUR_BYTES(pdata, n, val) l_setDataFourBytes(pdata, n, val)
#endif /* USE_INLINE_ACCESSORS */
#endif /* LEPTONICA_ARRAY_ACCESS_H */